Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Diplospory and Parthenogenesis in Sexual × Agamospermous (Apomictic) Erigeron (Asteraceae) Hybrids

Richard D. Noyes
International Journal of Plant Sciences
Vol. 161, No. 1 (January 2000), pp. 1-12
DOI: 10.1086/314238
Stable URL: http://www.jstor.org/stable/10.1086/314238
Page Count: 12
  • Read Online (Free)
  • Download ($19.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Diplospory and Parthenogenesis in Sexual ×
Agamospermous (Apomictic) Erigeron
(Asteraceae) Hybrids
Preview not available

Abstract

Segregation for asexual seed production was evaluated for 130 experimental F1 hybrids resulting from a cross between diploid (2n=18) sexual Erigeron strigosus and triploid (2n=27) agamospermous Erigeron annuus. Paternity of hybrids was documented using 13 RAPD markers. The distribution of F1 chromosome numbers is bimodal, centering on diploid and triploid ploidal levels but with underrepresentation of diploids. Diplosporous versus meiotic megagametophyte development was ascertained microscopically for ≥100 ovules per plant. Diplospory ranges from 0% to 100% among all progeny but is uniformly low (0%–3%) for 17 diploid hybrids. The inheritance of diplospory in Erigeron appears to be best explained by a one‐locus–two‐allele polysomic model with selection against gametes homozygous for diplospory. Parthenogenesis, estimated via seed counts, ranges from 0% to 60% and apparently is contingent upon diplospory, as seed production was absent or very low in predominantly meiotic hybrids. However, the absence of parthenogenesis in many highly diplosporous hybrids indicates that these two aspects of agamospermous development are not strictly associated. The segregation of both diplospory and parthenogenesis in this population will permit further genetic dissection of these traits with molecular marker–based analyses.

Page Thumbnails

  • Thumbnail: Page 
1
    1
  • Thumbnail: Page 
2
    2
  • Thumbnail: Page 
3
    3
  • Thumbnail: Page 
4
    4
  • Thumbnail: Page 
5
    5
  • Thumbnail: Page 
6
    6
  • Thumbnail: Page 
7
    7
  • Thumbnail: Page 
8
    8
  • Thumbnail: Page 
9
    9
  • Thumbnail: Page 
10
    10
  • Thumbnail: Page 
11
    11
  • Thumbnail: Page 
12
    12