Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Interactive Effects of Rearing Temperature and Oxygen on the Development of Drosophila melanogaster

Melanie R. Frazier, H. Arthur Woods and Jon F. Harrison
Physiological and Biochemical Zoology: Ecological and Evolutionary Approaches
Vol. 74, No. 5 (September/October 2001), pp. 641-650
DOI: 10.1086/322172
Stable URL: http://www.jstor.org/stable/10.1086/322172
Page Count: 10
  • Read Online (Free)
  • Download ($19.00)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Interactive Effects of Rearing Temperature and Oxygen on the Development of Drosophila melanogaster
Preview not available

Abstract

Abstract Although higher temperatures strongly stimulate ectothermic metabolic rates, they only slightly increase oxygen diffusion rates and decrease oxygen solubility. Consequently, we predicted that insect gas exchange systems would have more difficulty meeting tissue oxygen demands at higher temperatures. In this study, Drosophila melanogaster were reared from egg to adult in hyperoxic (40%), hypoxic (10%), and normoxic (21%) conditions and in temperatures ranging from 15°–31.5°C to examine the interactive effect of temperature and oxygen on development. Hyperoxia generally increased mass and growth rate at higher rearing temperatures. At lower rearing temperatures, however, hyperoxia had a very small effect on mass, did not affect growth rate, and lengthened time to eclosion. Relative to normoxia, flies reared in hypoxic conditions were generally smaller (mass and thorax length), had longer eclosion times, slower growth rates, and reduced survival. At cooler temperatures, hypoxia had relatively modest or nonsignificant effects on development, while at higher temperatures, the effects of hypoxia were large. These results suggest that higher temperatures reduce oxygen delivery capacity relative to tissue oxygen needs, which may partially explain why ectotherms are smaller when development occurs at higher temperatures.

Page Thumbnails

  • Thumbnail: Page 
1
    1
  • Thumbnail: Page 
2
    2
  • Thumbnail: Page 
3
    3
  • Thumbnail: Page 
4
    4
  • Thumbnail: Page 
5
    5
  • Thumbnail: Page 
6
    6
  • Thumbnail: Page 
7
    7
  • Thumbnail: Page 
8
    8
  • Thumbnail: Page 
9
    9
  • Thumbnail: Page 
10
    10