Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Holocene Hydrological Changes Inferred from Alluvial Stream Entrenchment in North Tian Shan (Northwestern China)

Blanche Poisson and Jean‐Philippe Avouac
The Journal of Geology
Vol. 112, No. 2 (March 2004), pp. 231-249
DOI: 10.1086/381659
Stable URL: http://www.jstor.org/stable/10.1086/381659
Page Count: 19
  • Read Online (Free)
  • Download ($19.00)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Holocene Hydrological Changes Inferred from Alluvial Stream Entrenchment in North Tian Shan (Northwestern China)
Preview not available

Abstract

Abstract We analyze the possible contribution of climate change or tectonics on fluvial incision from the study of a case example along the northern flank of Tian Shan. The rivers that exit the high range fed large alluvial fans by the end of the last glacial period. They have since deeply entrenched the piedmont by as much as 300 m. We have surveyed several terraces that were cut and abandoned during river entrenchment, providing information on intermediate positions of the riverbed during downcutting. They suggest a gradual decline in river slope during a major phase of incision throughout the Holocene. Tectonic uplift affects only a zone about 5 km wide, corresponding to a growing anticline, and is shown to account for about 10% of total incision. Incision was therefore most probably driven by climate change. From observed fluvial incision, we estimate the water discharge in excess of that needed to carry the sediments supplied by hillslope erosion in the headwaters. We used a model based on a transport‐limited erosion law. The model predicts relaxation process with entrenchment in the upper reach, downstream progradation of the incision‐sedimentation line, and a progressive decrease of river slope during incision consistent with our observations. According to this model, river slope might be used as a proxy for specific discharge and then for volumetric discharge, provided that an assumption is made about river width variations. We conclude that river incision in the study area has resulted from dynamic adjustment of the hydrological system to the settlement of wetter conditions in the early Holocene, when water discharge might have been about three times as high as at present. Then, a rather arid climate with enhanced seasonality has likely prevailed from the mid‐Holocene (∼6 ka B.P.) until now.

Page Thumbnails

  • Thumbnail: Page 
1
    1
  • Thumbnail: Page 
2
    2
  • Thumbnail: Page 
3
    3
  • Thumbnail: Page 
4
    4
  • Thumbnail: Page 
5
    5
  • Thumbnail: Page 
6
    6
  • Thumbnail: Page 
7
    7
  • Thumbnail: Page 
8
    8
  • Thumbnail: Page 
9
    9
  • Thumbnail: Page 
10
    10
  • Thumbnail: Page 
11
    11
  • Thumbnail: Page 
12
    12
  • Thumbnail: Page 
13
    13
  • Thumbnail: Page 
14
    14
  • Thumbnail: Page 
15
    15
  • Thumbnail: Page 
16
    16
  • Thumbnail: Page 
17
    17
  • Thumbnail: Page 
18
    18
  • Thumbnail: Page 
19
    19