Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Observational Requirements for High‐Fidelity Reverberation Mapping

Keith Horne, Bradley M. Peterson, Stefan J. Collier and Hagai Netzer
Publications of the Astronomical Society of the Pacific
Vol. 116, No. 819 (May 2004), pp. 465-476
DOI: 10.1086/420755
Stable URL: http://www.jstor.org/stable/10.1086/420755
Page Count: 12
  • Download PDF
  • Add to My Lists
  • Cite this Item
We're having trouble loading this content. Download PDF instead.

Abstract

ABSTRACT We present a series of simulations to demonstrate that high‐fidelity velocity‐delay maps of the emission‐line regions in active galactic nuclei (AGNs) can be obtained from time‐resolved spectrophotometric data sets like those that will arise from the proposed Kronos satellite. While previous reverberation‐mapping experiments have established the size scale R of the broad emission‐line regions from the mean time delay \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\tau =R/ c$ \end{document} between the line and continuum variations and have provided strong evidence for supermassive black holes, the detailed structure and kinematics of the broad‐line region remain ambiguous and poorly constrained. Here we outline the technical improvements that will be required to successfully map broad‐line regions by reverberation techniques. For typical AGN continuum light curves, characterized by power‐law power spectra \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $P( f) \propto f^{-\alpha }$ \end{document} with \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\alpha =-1.5\pm 0.5$ \end{document} , our simulations show that a small UV/optical spectrometer like Kronos will clearly distinguish between currently viable alternative kinematic models. From spectra sampled at time intervals \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\Delta t$ \end{document} and sustained for a total duration \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $T_{\mathrm{dur}\,}$ \end{document} , we can reconstruct high‐fidelity velocity‐delay maps with velocity resolution comparable to that of the spectra, and delay resolution \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\Delta \tau \approx 2\Delta t$ \end{document} , provided that \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $T_{\mathrm{dur}\,}$ \end{document} exceeds the broad‐line region light crossing time by at least a factor of 3. Even very complicated kinematical models, such as a Keplerian flow with superimposed spiral wave pattern, are resolved in maps from our simulated Kronos data sets. Reverberation mapping with Kronos data is therefore likely to deliver the first clear maps of the geometry and kinematics in the broad emission‐line regions 1–100 μas from supermassive black holes.

Notes and References

This item contains 44 references.

REFERENCES
  • ['Alexander, T., & Netzer, H. 1997, MNRAS, 284, 967']
  • ['Blandford, R., & McKee, C. F. 1982, ApJ, 255, 419']
  • ['Bottorff, M., Korista, K. T., Shlosman, I., & Blandford, R. D. 1997, ApJ, 479, 200']
  • ['Chiang, J., & Murray, N. 1996, ApJ, 466, 704']
  • ['Clavel, J., et al. 1991, ApJ, 366, 64']
  • ['Collier, S., & Peterson, B. M. 2001, ApJ, 555, 775']
  • ['Collier, S., Peterson, B. M., & Horne, K. 2001, in ASP Conf. Ser. 224, Probing the Physics of Active Galactic Nuclei by Multiwavelength Monitoring, ed. B. M. Peterson, R. S. Polidan, & R. W. Pogge (San Francisco: ASP), 457']
  • ['Collin‐Souffrin, S., Dyson, J. E., McDowell, J. C., & Perry, J. J. 1988, MNRAS, 232, 539']
  • ['Done, C., & Krolik, J. H. 1996, ApJ, 463, 144']
  • ['Ferrarese, L., Pogge, R. W., Peterson, B. M., Merritt, D., Wandel, A., & Joseph, C. L. 2001, ApJ, 555, L79']
  • ['Goad, M., & Wanders, I. 1996, ApJ, 469, 113']
  • ['Horne, K. 1994, in ASP Conf. Ser. 69, Reverberation Mapping of the Broad‐Line Region in Active Galactic Nuclei, ed. P. M. Gondhalekar, K. Horne, & B. M. Peterson (San Francisco: ASP), 23']
  • ['———. 1999, in ASP Conf. Ser. 162, Quasars and Cosmology, ed. G. Ferland & J. Baldwin (San Francisco: ASP), 189']
  • ['———. 2001, in ASP Conf. Ser. 224, Probing the Physics of Active Galactic Nuclei by Multiwavelength Monitoring, ed. B. M. Peterson, R. S. Polidan, & R. W. Pogge (San Francisco: ASP), 387']
  • ['Horne, K., Korista, K. T., & Goad, M. R. 2003, MNRAS, 339, 367']
  • ['Kaspi, S., & Netzer, H. 1999, ApJ, 524, 71']
  • ['Kaspi, S., Smith, P. S., Netzer, H., Maoz, D., Jannuzi, B. T., & Giveon, U. 2000, ApJ, 533, 631']
  • ['Kollatschny, W. 2003, A&A, 407, 461']
  • ['Korista, K. T., et al. 1995, ApJS, 97, 285']
  • ['Krolik, J. H., & Done, C. 1995, ApJ, 440, 166']
  • ['Krolik, J. H., McKee, C. F., & Tarter, C. B. 1981, ApJ, 249, 422']
  • ['Laor, A. 1998, ApJ, 505, L83']
  • ['McLure, R. J., & Jarvis, M. J. 2002, MNRAS, 337, 109']
  • ['Netzer, H., & Peterson, B. M. 1997, in Astronomical Time Series, ed. D. Maoz, A. Sternberg, & E. M. Leibowitz (Dordrecht: Kluwer), 85']
  • ['Onken, C. A., & Peterson, B. M. 2002, ApJ, 572, 746']
  • ['Peterson, B. M. 1993, PASP, 105, 247']
  • ['———. 2001, in Advanced Lectures on the Starburst‐AGN Connection, ed. I. Aretxaga, D. Kunth, & R. Mújica (Singapore: World Scientific), 3']
  • ['Peterson, B. M., Polidan, R. S., & Horne, K. 2004, Astron. Nachr. 325, 257']
  • ['Peterson, B. M., Polidan, R. S., & Robinson, E. L. 2003, Proc. SPIE, 4854, 311']
  • ['Peterson, B. M., & Wandel, A. 1999, ApJ, 521, L95']
  • ['———. 2000, ApJ, 540, L13']
  • ['Peterson, B. M., et al. 1991, ApJ, 368, 119']
  • ['Peterson, B. M., Wanders, I., Horne, K., Collier, S., Alexander, T., Kaspi, S., & Maoz, D. 1998, PASP, 110, 660']
  • ['Pijpers, F. P., & Wanders, I. 1994, MNRAS, 271, 183']
  • ['Polidan, R. S., & Peterson, B. M. 2001, in ASP Conf. Ser. 224, Probing the Physics of Active Galactic Nuclei by Multiwavelength Monitoring, ed. B. M. Peterson, R. S. Polidan, & R. W. Pogge (San Francisco: ASP), 479']
  • ['Press, W. 1978, Comments Astrophys., 7, 103']
  • ['Rees, M. J. 1987, MNRAS, 228, 47P']
  • ['Ulrich, M.‐H., & Horne, K. 1996, MNRAS, 283, 748']
  • ['Vestergaard, M. 2002, ApJ, 571, 733']
  • ['Vio, R., Horne, K., & Wamsteker, W. 1994, PASP, 106, 1091']
  • ['Wandel, A., Peterson, B. M., & Malkan, M. A. 1999, ApJ, 526, 579']
  • ['Wanders, I., et al. 1995, ApJ, 453, L87']
  • ['Wanders, I., et al. 1997, ApJS, 113, 69']
  • ['White, R. J., & Peterson, B. M. 1994, PASP, 106, 879']