Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Do Hosts and Parasites Coevolve? Empirical Support from the Schistosoma System

J. P. Webster, C. M. Gower and L. Blair
The American Naturalist
Vol. 164, No. S5, ECOLOGY AND EVOLUTION OF HOST‐PATHOGEN INTERACTIONS IN NATURAL POPULATIONSA Symposium Organized by Drew Harvell (November 2004), pp. S33-S51
DOI: 10.1086/424607
Stable URL: http://www.jstor.org/stable/10.1086/424607
Page Count: 19
  • Read Online (Free)
  • Download ($19.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Do Hosts and Parasites Coevolve? Empirical Support from the Schistosoma System
Preview not available

Abstract

Abstract: Coevolution between host and parasite is, in principle, a powerful determinant of the biology and genetics of infection and disease. However, coevolution is difficult to demonstrate rigorously in practice and therefore has rarely been observed empirically, particularly in animal‐parasite systems. Research on host‐schistosome interactions has the potential for making an important contribution to the study of coevolution or reciprocal adaptation. This may be particularly pertinent because schistosomes represent an indirectly transmitted macroparasite, so often overlooked among both theoretical and empirical studies. Here we present ideas and experiments on host‐schistosome interactions, in part reviewed from published work but focusing in particular on preliminary novel data from our ongoing studies of potential host‐schistosome evolution and coevolution in the laboratory. The article is split into three main sections: we first focus on the evidence for evolution in the host, then in the parasite, before combining both to illustrate the gathering evidence of host‐parasite coevolution in the snail‐schistosome system. In particular, we demonstrate that genetic architecture, variability, and selective pressures are present for the evolution of resistance and susceptibility, virulence, and infectivity to occur, the mechanisms allowing such polymorphisms to be maintained, and that hosts and parasites appear to have reciprocal effects on each other’s phenotype and genotype.

Page Thumbnails

  • Thumbnail: Page 
1
    1
  • Thumbnail: Page 
2
    2
  • Thumbnail: Page 
3
    3
  • Thumbnail: Page 
4
    4
  • Thumbnail: Page 
5
    5
  • Thumbnail: Page 
6
    6
  • Thumbnail: Page 
7
    7
  • Thumbnail: Page 
8
    8
  • Thumbnail: Page 
9
    9
  • Thumbnail: Page 
10
    10
  • Thumbnail: Page 
11
    11
  • Thumbnail: Page 
12
    12
  • Thumbnail: Page 
13
    13
  • Thumbnail: Page 
14
    14
  • Thumbnail: Page 
15
    15
  • Thumbnail: Page 
16
    16
  • Thumbnail: Page 
17
    17
  • Thumbnail: Page 
18
    18
  • Thumbnail: Page 
19
    19