Initial Diversification of Living Amphibians Predated the Breakup of Pangaea

Diego San Mauro, Miguel Vences, Marina Alcobendas, Rafael Zardoya and Axel Meyer
The American Naturalist
Vol. 165, No. 5 (May 2005), pp. 590-599
DOI: 10.1086/429523
Stable URL:
Page Count: 10
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:


Log in to your personal account or through your institution.

Initial Diversification of Living Amphibians Predated the Breakup of Pangaea
We're having trouble loading this content. Download PDF instead.


Abstract: The origin and divergence of the three living orders of amphibians (Anura, Caudata, Gymnophiona) and their main lineages are one of the most hotly debated topics in vertebrate evolution. Here, we present a robust molecular phylogeny based on the nuclear RAG1 gene as well as results from a variety of alternative independent molecular clock calibrations. Our analyses suggest that the origin and early divergence of the three living amphibian orders dates back to the Palaeozoic or early Mesozoic, before the breakup of Pangaea, and soon after the divergence from lobe‐finned fishes. The resulting new biogeographic scenario, age estimate, and the inferred rapid divergence of the three lissamphibian orders may account for the lack of fossils that represent plausible ancestors or immediate sister taxa of all three orders and the heretofore paradoxical distribution of some amphibian fossil taxa. Furthermore, the ancient and rapid radiation of the three lissamphibian orders likely explains why branch lengths connecting their early nodes are particularly short, thus rendering phylogenetic inference of implicated relationships especially difficult.

Notes and References

This item contains 47 references.

Literature Cited
  • ['Baez, A. M. 2000. Tertiary anurans from South America. Pages 1388–1401 in H. Heatwole and R. L. Carroll, eds. Amphibian biology. Surrey Beatty, Chipping Norton, Australia.']
  • ['Benton, M. J. 1990. Phylogeny of the major tetrapod groups: morphological data and divergence dates. Journal of Molecular Evolution 30:409–424.']
  • ['Benton, M. J., and F. J. Ayala. 2003. Dating the tree of life. Science 300:1698–1700.']
  • ['Biju, S. D., and F. Bossuyt. 2003. New frog family from India reveals an ancient biogeographical link with the Seychelles. Nature 425:711–714.']
  • ['Bromham, L., D. Penny, A. Rambaut, and M. D. Hendy. 2000. The power of relative rates tests depends on the data. Journal of Molecular Evolution 50:296–301.']
  • ['Carroll, R. L. 2001. The origin and early radiation of terrestrial vertebrates. Journal of Paleontology 75:1202–1213.']
  • ['Carroll, R. L., C. Boisvert, J. Bolt, D. M. Green, N. Philip, C. Rolian, R. Schoch, et al. 2004. Changing patterns of ontogeny from osteolepiform fish through Permian tetrapods as a guide to the early evolution of land vertebrates. Pages 321–343 in G. Arratia, M. V. H. Wilson, and R. Cloutier, eds. Recent advances in the origin and early radiation of vertebrates. Pfeil, Munich.']
  • ['Douzery, E. J. P., E. A. Snell, E. Baptese, F. Delsuc, and H. Philippe. 2004. The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils? Proceedings of the National Academy of Sciences of the USA 101:15386–15391.']
  • ['Duellman, W. E., and L. Trueb. 1994. Biology of amphibians. Johns Hopkins University Press, Baltimore.']
  • ['Estes, R., and O. Reig. 1973. The early fossil record of frogs: a review of the evidence. Pages 11–63 in J. Vial, ed. Evolutionary biology of the anurans. University of Missouri Press, Columbia.']
  • ['Estes, R., and M. H. Wake. 1972. The first fossil record of caecilian amphibians. Nature 239:228–231.']
  • ['Evans, S. E., and M. Borsuk‐Bialynicka. 1998. A stem‐group frog from the Early Triassic of Poland. Acta Palaeontologica Polonica 43:573–580.']
  • ['Evans, S. E., A. R. Milner, and C. Werner. 1996. Sirenid salamanders and a gymnophionan amphibian from the Cretaceous of the Sudan. Palaeontology 39:77–95.']
  • ['Feller, A. E., and S. B. Hedges. 1998. Molecular evidence for the early history of living amphibians. Molecular Phylogenetics and Evolution 9:509–516.']
  • ['Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution 17:368–376.']
  • ['Fitch, W. M. 1971. Toward defining the course of evolution: minimal change for a specific tree topology. Systematic Zoology 20:406–416.']
  • ['Gao, K. Q., and N. H. Shubin. 2003. Earliest known crown‐group salamanders. Nature 422:424–428.']
  • ['Graur, D., and W. Martin. 2004. Reading the entrails of chickens: molecular timescales of evolution and the illusion of precision. Trends in Genetics 20:80–86.']
  • ['Groth, J. G., and G. F. Barrowclough. 1999. Basal divergences in birds and the phylogenetic utility of the nuclear RAG‐1 gene. Molecular Phylogenetics and Evolution 12:115–123.']
  • ['Hoegg, S., M. Vences, H. Brinkmann, and A. Meyer. 2004. Phylogeny and comparative substitution rates of frogs inferred from sequences of three nuclear genes. Molecular Biology and Evolution 21:1188–1200.']
  • ['Huelsenbeck, J. P., and F. R. Ronquist. 2001. MrBayes: Bayesian inference of phylogeny. Bioinformatics 17:754–755.']
  • ['Huelsenbeck, J. P., F. R. Ronquist, R. Nielsen, and J. P. Bollback. 2001. Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294:2310–2314.']
  • ['Jenkins, F. A., and D. M. Walsh. 1993. An Early Jurassic caecilian with limbs. Nature 365:246–249.']
  • ['Kishino, H., J. L. Thorne, and W. J. Bruno. 2001. Performance of a divergence time estimation method under a probabilistic model of rate evolution. Molecular Biology and Evolution 18:352–361.']
  • ['Kumar, S., and S. B. Hedges. 1998. A molecular timescale for vertebrate evolution. Nature 392:917–920.']
  • ['Meyer, A., and R. Zardoya. 2003. Recent advances in the (molecular) phylogeny of vertebrates. Annual Review of Ecology, Evolution, and Systematics 34:311–338.']
  • ['Milner, A. R. 1993. The Paleozoic relatives of lissamphibians. Herpetological Monographs 7:8–27.']
  • ['Nei, M., P. Xu, and G. Glazko. 2001. Estimation of divergence times from multiprotein sequences for a few mammalian species and several distantly related organisms. Proceedings of the National Academy of Sciences of the USA 98:2497–2502.']
  • ['Pitman, W. C., III, S. Cande, J. LaBrecque, and J. Pindell. 1993. Fragmentation of Gondwana: the separation of Africa from South America. Pages 15–34 in P. Goldblatt, ed. Biological relationships between Africa and South America. Yale University Press, New Haven, CT.']
  • ['Posada, D., and K. A. Crandall. 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818.']
  • ['Rabinowitz, P. D., M. F. Coffin, and D. Falvey. 1983. The separation of Madagascar and Africa. Science 220:67–69.']
  • ['Rage, J., and Z. Rocek. 1989. Redescription of Triadobatrachus massinoti (Piveteau, 1936) an anuran amphibian from the early Triassic. Paleontographica Abteilung A Palaeozoologie‐Stratigraphie 206:1–16.']
  • ['Reisz, R. R., and J. Müller. 2004. Molecular timescales and the fossil record: a paleontological perspective. Trends in Genetics 20:237–241.']
  • ['Rocek, Z. 2000. Mesozoic anurans. Pages 1295–1331 in H. Heatwole and R. L. Carroll, eds. Amphibian biology. Surrey Beatty, Chipping Norton, Australia.']
  • ['Rodríguez, F., J. F. Oliver, A. Marín, and J. R. Medina. 1990. The general stochastic model of nucleotide substitution. Journal of Theoretical Biology 142:485–501.']
  • ['Rodríguez‐Trelles, F., R. Tarrío, and F. J. Ayala. 2002. A methodological bias toward overstimation of molecular evolutionary time scales. Proceedings of the National Academy of Sciences of the USA 99:8112–8115.']
  • ['Rzhetsky, A., and M. Nei. 1992. A simple method for estimating and testing minimum‐evolution trees. Molecular Biology and Evolution 9:945–967.']
  • ['San Mauro, D., D. J. Gower, O. V. Oommen, M. Wilkinson, and R. Zardoya. 2004. Phylogeny of caecilian amphibians (Gymnophiona) based on complete mitochondrial genomes and nuclear RAG1. Molecular Phylogenetics and Evolution 33:413–427.']
  • ['Seddon, J. M., P. R. Baverstock, and A. Georges. 1998. The rate of mitochondrial 12S rRNA gene evolution is similar in freshwater turtles and marsupials. Journal of Molecular Evolution 46:460–464.']
  • ['Smith, A. G., D. G. Smith, and B. M. Funnell. 1994. Atlas of Mesozoic and Cenozoic coastlines. Cambridge University Press, Cambridge.']
  • ['Swofford, D. L. 1998. PAUP*: phylogenetic analysis using parsimony (*and other methods). Version 4.0. Sinauer, Sunderland, MA.']
  • ['Thorne, J. L., and H. Kishino. 2002. Divergence time and evolutionary rate estimation with multilocus data. Systematic Biology 51:689–702.']
  • ['Thorne, J. L., H. Kishino, and I. S. Painter. 1998. Estimating the rate of evolution of the rate of molecular evolution. Molecular Biology and Evolution 15:1647–1657.']
  • ['Vences, M., D. R. Vieites, F. Glaw, H. Brinkmann, J. Kosuch, M. Veith, and A. Meyer. 2003. Multiple overseas dispersal in amphibians. Proceedings of the Royal Society of London B 270:2435–2442.']
  • ['Wilkinson, M., J. A. Sheps, O. V. Oommen, and B. L. Cohen. 2002. Phylogenetic relationships of Indian caecilians (Amphibia: Gymnophiona) inferred from mitochondrial rRNA gene sequences. Molecular Phylogenetics and Evolution 23:401–407.']
  • ['Zardoya, R., and A. Meyer. 2001. On the origin of and phylogenetic relationships among living amphibians. Proceedings of the National Academy of Sciences of the USA 98:7380–7383.']
  • ['Zhu, M., X. Yu, and P. E. Ahlberg. 2001. A primitive sarcopterygian fish with an eyestalk. Nature 410:81–84.']