Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Floral and Vegetative Morphogenesis in California Poppy (Eschscholzia californica Cham.)

Annette Becker, Stefan Gleissberg and David R. Smyth
International Journal of Plant Sciences
Vol. 166, No. 4 (July 2005), pp. 537-555
DOI: 10.1086/429866
Stable URL: http://www.jstor.org/stable/10.1086/429866
Page Count: 19
  • Read Online (Free)
  • Download ($19.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Floral and Vegetative Morphogenesis in California Poppy (Eschscholzia californica Cham.)
Preview not available

Abstract

For studies of the evolution of development in angiosperms, early‐diverging eudicot taxa are of particular interest for comparisons with established core eudicot model plants, such as Arabidopsis. Here we provide a detailed description of shoot and floral development of the basal eudicot California poppy (Eschscholzia californica). Rosette formation in the vegetative phase is accompanied by increased leaf complexity and shoot apex size. The flowering phase is characterized by internode elongation, formation of dissected cauline leaves, terminal flowers, and basipetal inflorescence branching. For developing flowers and fruits, we have defined 14 stages according to important landmark events, from inflorescence primordium initiation through seed dispersal. Floral organ initiation, morphogenesis, increase in floral meristem size, and the surface structure of mature floral organs are recorded in detail. The duration of the later floral stages, as well as the path of pollen tube growth in the gynoecium, is documented. Comparison of California poppy floral development with that of Arabidopsis indicates considerable differences in terms of organ fusion, whorl proliferation, and variability of size and organ number between the two species. Transitions in meristem identity from germination to floral organogenesis were monitored using expression of the developmental control gene EcFLO, the Eschscholzia ortholog of FLORICAULA/LEAFY. We found that the pattern of expression of EcFLO in the flanks of the shoot apex is maintained from late embryogenesis to flower initiation, indicating a continuous role for this gene in meristem function. As flower organs develop, EcFLO expression becomes more restricted to petal and stamen primordia. Development of the gynoecium occurs without EcFLO expression, indicating that EcFLO may not be necessary for the activation of C‐class genes.

Page Thumbnails

  • Thumbnail: Page 
1
    1
  • Thumbnail: Page 
2
    2
  • Thumbnail: Page 
3
    3
  • Thumbnail: Page 
4
    4
  • Thumbnail: Page 
5
    5
  • Thumbnail: Page 
6
    6
  • Thumbnail: Page 
7
    7
  • Thumbnail: Page 
8
    8
  • Thumbnail: Page 
9
    9
  • Thumbnail: Page 
10
    10
  • Thumbnail: Page 
11
    11
  • Thumbnail: Page 
12
    12
  • Thumbnail: Page 
13
    13
  • Thumbnail: Page 
14
    14
  • Thumbnail: Page 
15
    15
  • Thumbnail: Page 
16
    16
  • Thumbnail: Page 
17
    17
  • Thumbnail: Page 
18
    18
  • Thumbnail: Page 
19
    19