Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Independent and Competing Disease Risks: Implications for Host Populations in Variable Environments

Anna E. Jolles, Rampal S. Etienne and Han Olff
The American Naturalist
Vol. 167, No. 5 (May 2006), pp. 745-757
DOI: 10.1086/503055
Stable URL: http://www.jstor.org/stable/10.1086/503055
Page Count: 13
  • Read Online (Free)
  • Download ($19.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Independent and Competing Disease Risks: Implications for Host Populations in Variable Environments
Preview not available

Abstract

Abstract: Disease models usually assume disease to act independently of other mortality‐ and morbidity‐causing factors. Alternatively, disease may function as a competing risk factor, for example, killing already moribund hosts. Using tuberculosis (TB) in African buffalo as a model system, we explore consequences of competing or independent disease effects for host population dynamics. We include scenarios with density‐dependent and density‐independent effects of environmental variation, exemplified by variable food availability (driven by rainfall) and catastrophic droughts, respectively. Independent disease effects reduce population size linearly with prevalence, irrespective of the nature of environmental variation. Competing disease risks alter population size only if density‐independent variation is present; then, disease reduces population size nonlinearly. Field data indicate that the net effect of TB on buffalo likely falls between the extremes of total independence and competition with other risk factors: TB increases mortality and decreases fecundity in some prime‐aged buffalo, suggesting independent disease risks in these individuals, while similar disease effects in senescent buffalo may act as competing risks. Moreover, increased survival and fecundity of TB‐negative buffalo may compensate for some disease‐related losses. Model assumptions on independent or competing disease risks and environmental variability should be considered explicitly when assessing disease effects on wildlife populations.

Page Thumbnails

  • Thumbnail: Page 
1
    1
  • Thumbnail: Page 
2
    2
  • Thumbnail: Page 
3
    3
  • Thumbnail: Page 
4
    4
  • Thumbnail: Page 
5
    5
  • Thumbnail: Page 
6
    6
  • Thumbnail: Page 
7
    7
  • Thumbnail: Page 
8
    8
  • Thumbnail: Page 
9
    9
  • Thumbnail: Page 
10
    10
  • Thumbnail: Page 
11
    11
  • Thumbnail: Page 
12
    12
  • Thumbnail: Page 
13
    13