If you need an accessible version of this item please contact JSTOR User Support

Genetic and Maternal Determinants of Effective Dispersal: The Effect of Sire Genotype and Size at Birth in Side‐Blotched Lizards

Barry Sinervo, Ryan Calsbeek, Tosha Comendant, Christiaan Both, Chloe Adamopoulou and Jean Clobert
The American Naturalist
Vol. 168, No. 1 (July 2006), pp. 88-99
DOI: 10.1086/505765
Stable URL: http://www.jstor.org/stable/10.1086/505765
Page Count: 12
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
Genetic and Maternal Determinants of Effective Dispersal: The Effect of Sire Genotype and Size at Birth in Side‐Blotched Lizards
Preview not available

Abstract

Abstract: We assessed genetic factors on progeny dispersal due to sire color morph genotypes in a field pedigree and lab crosses, and we measured maternal effects by studying both natural and experimentally induced egg size variation. Progeny were released into nature upon hatching, but we recorded dispersal distance at maturity, which reflects effective dispersal after viability selection has run its course. Progeny dispersal was significantly affected by sire genotype. Progeny from orange sires dispersed the farthest. Progeny from blue sires dispersed intermediate distances. Progeny from yellow sires were the most philopatric. Sire genotype effects interacted with egg size. In particular, enlarged progeny from orange sires dispersed farther, while enlarged progeny from yellow sires were more philopatric. Progeny from blue sires were unaffected by egg size manipulations. Egg manipulations and natural variation generally had concordant effects indicative of causation. However, asymmetry of gigantization and miniaturization on progeny dispersal from some sire genotypes suggest the involvement of maternal factors besides egg size. Results of laboratory crosses with progeny released into nature confirmed key sire genotype effects and identified additional maternal effects that modulated dispersal as a function of progeny gender. We discuss the adaptive implications of progeny dispersal in the context of male (rock‐paper‐scissors) and female strategies (r‐ and K‐density cycle) that are associated with color morphs.

Page Thumbnails

  • Thumbnail: Page 
1
    1
  • Thumbnail: Page 
2
    2
  • Thumbnail: Page 
3
    3
  • Thumbnail: Page 
4
    4
  • Thumbnail: Page 
5
    5
  • Thumbnail: Page 
6
    6
  • Thumbnail: Page 
7
    7
  • Thumbnail: Page 
8
    8
  • Thumbnail: Page 
9
    9
  • Thumbnail: Page 
10
    10
  • Thumbnail: Page 
11
    11
  • Thumbnail: Page 
12
    12