Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

The Shapes of Phylogenetic Trees of Clades, Faunas, and Local Assemblages: Exploring Spatial Pattern in Differential Diversification

Stephen B. Heard and Graham H. Cox
The American Naturalist
Vol. 169, No. 5 (May 2007), pp. E107-E118
DOI: 10.1086/512690
Stable URL: http://www.jstor.org/stable/10.1086/512690
Page Count: 12
Subjects: Ecology & Evolutionary Biology Biological Sciences
  • Download PDF
  • Add to My Lists
  • Cite this Item
The Shapes of Phylogenetic Trees of Clades, Faunas, and Local Assemblages: Exploring Spatial Pattern in Differential Diversification
We're having trouble loading this content. Download PDF instead.

Abstract

Abstract: Life on Earth is characterized by strong diversity skewness: related lineages typically show pronounced variation in diversification success, and clades contain hyperdiverse and depauperate subclades. Previous studies have documented diversity skewness only for entire (global) clades. We demonstrate methods for measurement and significance testing of diversity skewness of local assemblages and regional biotas; we illustrate this with an analysis of geographic structure in diversity skewness of primate assemblages. For primates, continental faunas differ in diversity skewness from expectations based on the global phylogeny: South American faunas have significantly low skewness and African faunas have significantly high skewness. However, no local assemblage has diversity skewness different from that expected based on sampling the continental fauna. We also document a latitudinal gradient in diversity skewness for the African assemblages and test for (but do not find) associations of skewness with longitude, local species richness, and net primary productivity. Our data suggest that continental‐scale biogeographic events rather than local‐scale processes have shaped diversity skewness in modern primate faunas.

Notes and References

This item contains 53 references.

Literature Cited
  • ['Agapow, P. M., and A. Purvis. 2002. Power of eight tree‐shape statistics to detect nonrandom diversification: a comparison by simulation of two models of cladogenesis. Systematic Biology 51:866–872.']
  • ['Anderson, T. M., M. A. Lachance, and W. T. Starmer. 2004. The relationship of phylogeny to community structure: the cactus yeast community. American Naturalist 164:709–721.']
  • ['Blum, M. G. B., and O. Francois. 2005. On statistical tests of phylogenetic tree imbalance: the Sackin and other indices. Mathematical Biosciences 195:141–153.']
  • ['Blum, M. G. B., O. Francois, and S. Janson. 2006. The mean, variance and joint distribution of two statistics sensitive to phylogenetic tree balance. Annals of Applied Probability 16:2195–2214.']
  • ['Böhm, M., and P. J. Mayhew. 2005. Historical biogeography and the evolution of the latitudinal gradient of species richness in the Papionini (Primata: Cercopithecidae). Biological Journal of the Linnean Society 85:235–246.']
  • ['Boitani, L., F. Corsi, G. Reggianai, J. Sinibaldi, and P. Trapanese. 1999. A databank for the conservation and management of African mammals. Instituto di Ecologia Applicata, Rome.']
  • ['Brandle, M., A. Prinzing, R. Pfeifer, and R. Brandl. 2002. Dietary niche breadth for central European birds: correlations with species‐specific traits. Evolutionary Ecology Research 4:643–657.']
  • ['Burney, D. A. 1999. Rates, patterns, and the processes of landscape transformation and extinction in Madagascar. Pages 145–164 in R. D. E. MacPhee, ed. Extinctions in near time: causes, contexts, and consequences. Plenum, New York.']
  • ['Cavender‐Bares, J., D. D. Ackerley, D. A. Baum, and F. A. Bazzaz. 2004. Phylogenetic overdispersion in Floridian oak communities. American Naturalist 163:823–843.']
  • ['Cheviron, Z. A., S. J. Hackett, and A. P. Capparella. 2005. Complex evolutionary history of a Neotropical lowland forest bird (Lepidothrix coronata) and its implications for historical hypotheses of the origin of Neotropical avian diversity. Molecular Phylogenetics and Evolution 36:338–357.']
  • ['Darwin, C. (1859) 1968. The origin of species. Penguin, London.']
  • ['Davies, T. J., V. Savolainen, M. W. Chase, P. Goldblatt, and T. G. Barraclough. 2005. Environment, area, and diversification in the species‐rich flowering plant family Iridaceae. American Naturalist 166:418–425.']
  • ['Field, R., E. M. O’Brien, and R. J. Whittaker. 2005. Global models for predicting woody plant richness from climate: development and evaluation. Ecology 86:2263–2277.']
  • ['Gaston, K. J. 1991. How large is a species’ geographic range? Oikos 61:434–438.']
  • ['———. 2003. The structure and dynamics of geographic ranges. Oxford University Press, Oxford.']
  • ['Godfrey, L. R., W. L. Jungers, K. E. Reed, E. L. Simons, and P. S. Chatrath. 1997. Subfossil lemurs: inferences about past and present primate communities in Madagascar. Pages 218–256 in S. M. Goodman and B. D. Patterson, eds. Natural change and human impact in Madagascar. Smithsonian Institution, Washington, DC.']
  • ['Haffer, J. 1997. Alternative models of vertebrate speciation in Amazonia: an overview. Biodiversity and Conservation 6:451–476.']
  • ['Heard, S. B. 1992. Patterns in tree balance among cladistic, phenetic, and randomly generated phylogenetic trees. Evolution 46:1818–1826.']
  • ['Heard, S. B., and A. O. Mooers. 2002. Signatures of random and selective mass extinctions in phylogenetic tree balance. Systematic Biology 51:889–897.']
  • ['Housworth, E. A., and E. P. Martins. 2001. Random sampling of constrained phylogenies: conducting phylogenetic analyses when the phylogeny is partially known. Systematic Biology 50:628–639.']
  • ['Instituto di Ecologia Applicata. 1998. African mammals databank: a databank for the conservation and management of the African mammals. Report to the Director‐General for Development (DGVIII/A/1) of the European Commission, project no. B7‐6200/94‐15/VIII/ENV. European Commission, Brussels.']
  • ['IUCN. 1994. Guidelines for protected areas management categories. International Union for Conservation of Nature, Cambridge.']
  • ['Keitt, T. H., M. A. Lewis, and R. D. Holt. 2001. Allee effects, invasion pinning, and species’ borders. American Naturalist 157:203–216.']
  • ['Kellogg, E. A. 1999. Phylogenetic aspects of the evolution of C4 photosynthesis. Pages 411–444 in R. F. Sage and R. K. Monson, eds. C4 plant biology. Academic Press, San Diego, CA.']
  • ['Manly, B. F. J. 1997. Randomization, bootstrap, and Monte Carlo methods in biology. 2nd ed. Chapman & Hall, London.']
  • ['Mendelson, T. C., and K. L. Shaw. 2005. Sexual behaviour: rapid speciation in an arthropod. Nature 433:375–376.']
  • ['Mooers, A. O. 1995. Tree balance and tree completeness. Evolution 49:379–384.']
  • ['Mooers, A. O., and S. B. Heard. 1997. Inferring evolutionary process from phylogenetic tree shape. Quarterly Review of Biology 72:31–54.']
  • ['Mooers, A. O., S. B. Heard, and E. Chrostowski. 2004. Evolutionary heritage as a metric for conservation. Pages 120–138 in A. Purvis, J. L. Gittleman, and T. M. Brooks, eds. Phylogeny and conservation. Cambridge University Press, Cambridge.']
  • ['Mooers, A. O., L. J. Harmon, D. H. J. Wong, and S. B. Heard. 2007. Some models of phylogenetic tree shape. Pages 147–168 in O. Gascuel and M. Steel, eds. New mathematical models for evolution. Oxford University Press, Oxford.']
  • ['Morse, G. E., and B. D. Farrell. 2005. Ecological and evolutionary diversification of the seed beetle genus Stator (Coleoptera: Chrysomelidae: Bruchinae). Evolution 59:1315–1333.']
  • ['Nosil, P., and A. O. Mooers. 2005. Testing hypotheses about ecological specialization using phylogenetic trees. Evolution 59:2256–2263.']
  • ['Patterson, B. D., G. Ceballos, W. Sechrest, M. F. Tognelli, T. Brooks, L. Luna, P. Ortega, I. Salazar, and B. E. Young. 2005. Digital distribution maps of the mammals of the Western Hemisphere. Version 2.0. NatureServe, Arlington, VA.']
  • ['Purvis, A., and P. M. Agapow. 2002. Phylogeny imbalance: taxonomic level matters. Systematic Biology 51:844–854.']
  • ['Rogers, J. S. 1994. Central moments and probability distribution of Colless’s coefficient of tree imbalance. Evolution 48:2026–2036.']
  • ['Rosenzweig, M. L. 1995. Species diversity in space and time. Cambridge University Press, Cambridge.']
  • ['Rull, V. 2005. Biotic diversification in the Guayana Highlands: a proposal. Journal of Biogeography 32:921–927.']
  • ['Sage, R. F., D. A. Wedin, and M. Li. 1999. The biogeography of C4 photosynthesis: patterns and controlling factors. Pages 313–376 in R. F. Sage and R. K. Monson, eds. C4 plant biology. Academic Press, San Diego, CA.']
  • ['Scheiner, S. M., and M. R. Willig. 2005. Developing unified theories in ecology as exemplified with diversity gradients. American Naturalist 166:458–469.']
  • ['Schluter, D. 2000. The ecology of adaptive radiation. Oxford University Press, Oxford.']
  • ['Silvertown, J., K. McConway, D. Gowing, M. Dodd, M. F. Fay, J. A. Joseph, and K. Dolphin. 2006. Absence of phylogenetic signal in the niche structure of meadow plant communities. Proceedings of the Royal Society B: Biological Sciences 273:39–44.']
  • ['Sipes, S. D., and V. J. Tepedino. 2005. Pollen‐host specificity and evolutionary patterns of host switching in a clade of specialist bees (Apoidea: Diadasia). Biological Journal of the Linnean Society 86:487–505.']
  • ['Sokal, R. R., and F. J. Rohlf. 1995. Biometry: the principles and practice of statistics in biological research. W. H. Freeman, New York.']
  • ['Soutullo, A., S. Dodsworth, S. B. Heard, and A. O. Mooers. 2005. Distribution and correlates of carnivore phylogenetic diversity across the Americas. Animal Conservation 8:249–258.']
  • ['Stephens, P. R., and J. J. Wiens. 2004. Convergence, divergence, and homogenization in the ecological structure of emydid turtle communities: the effects of phylogeny and dispersal. American Naturalist 164:244–254.']
  • ['Swenson, N. G., and D. J. Howard. 2005. Clustering of contact zones, hybrid zones, and phylogeographic breaks in North America. American Naturalist 165:581–591.']
  • ['Vos, R. A. 2006. Inferring large phylogenies: the big tree problem. PhD thesis. Simon Fraser University, Burnaby.']
  • ['Webb, C. O., D. D. Ackerley, M. A. McPeek, and M. J. Donoghue. 2002. Phylogenies and community ecology. Annual Review of Ecology and Systematics 33:475–505.']
  • ['Weir, J. T. 2006. Divergent timing and patterns of species accumulation in lowland and highland Neotropical birds. Evolution 60:842–855.']
  • ['Wiens, J. J., M. C. Brandley, and T. W. Reeder. 2006. Why does a trait evolve multiple times within a clade? repeated evolution of snakelike body form in squamate reptiles. Evolution 60:123–141.']
  • ['Wilkinson, M., J. A. Cotton, C. Creevey, O. Eulenstein, S. R. Harris, F. J. Lapointe, C. Levasseur, J. O. McInerney, D. Pisani, and J. L. Thorley. 2005. The shape of supertrees to come: tree shape related properties of fourteen supertree methods. Systematic Biology 54:419–431.']
  • ['Williams, C. B. 1964. Patterns in the balance of nature. Academic Press, London.']
  • ['Wilson, D. E., and D. M. Reeder, eds. 1993. Mammal species of the world. Smithsonian Institution, Washington, DC.']

Supplements