Linking Traits to Energetics and Population Dynamics to Predict Lizard Ranges in Changing Environments

Lauren B. Buckley
The American Naturalist
Vol. 171, No. 1 (January 2008), pp. E1-E19
DOI: 10.1086/523949
Stable URL:
Page Count: 19
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:


Log in to your personal account or through your institution.

Linking Traits to Energetics and Population Dynamics to Predict Lizard Ranges in Changing Environments
We're having trouble loading this content. Download PDF instead.


Abstract: I present a dynamic bioenergetic model that couples individual energetics and population dynamics to predict current lizard ranges and those following climate warming. The model predictions are uniquely based on first principles of morphology, life history, and thermal physiology. I apply the model to five populations of a widespread North American lizard, Sceloporus undulatus, to examine how geographic variation in traits and life histories influences ranges. This geographic variation reflects the potential for species to adapt to environmental change. I then consider the range dynamics of the closely related Sceloporus graciosus. Comparing predicted ranges and actual current ranges reveals how dispersal limitations, species interactions, and habitat requirements influence the occupied portions of thermally suitable ranges. The dynamic model predicts individualistic responses to a uniform 3°C warming but a northward shift in the northern range boundary for all populations and species. In contrast to standard correlative climate envelope models, the extent of the predicted northward shift depends on organism traits and life histories. The results highlight the limitations of correlative models and the need for more dynamic models of species’ ranges.

Notes and References

This item contains 94 references.

Literature Cited
  • ['Adolph, S. C. 1990. Influence of behavioral thermoregulation on microhabitat use by two Sceloporus lizards. Ecology 71:315–327.']
  • ['Adolph, S. C., and W. P. Porter. 1993. Temperature, activity, and lizard life histories. American Naturalist 142:273–295.']
  • ['———. 1996. Growth, seasonality, and lizard life histories: age and size at maturity. Oikos 77:267–278.']
  • ['Andrews, R. M. 1998. Geographic variation in field body temperature of Sceloporus lizards. Journal of Thermal Biology 23:329–334.']
  • ['Andrews, R. M., and T. Asato. 1977. Energy utilization of a tropical lizard. Comparative Biochemistry and Physiology 58A:57–62.']
  • ['Angilletta, M. J. 2001a. Thermal and physiological constraints on energy assimilation in a widespread lizard (Sceloporus undulatus). Ecology 82:3044–3056.']
  • ['———. 2001b. Variation in metabolic rate between populations of a geographically widespread lizard. Physiological and Biochemical Zoology 74:11–21.']
  • ['Angilletta, M. J., T. Hill, and M. A. Robson. 2002. Is physiological performance optimized by thermoregulatory behavior? a case study of the eastern fence lizard, Sceloporus undulatus. Journal of Thermal Biology 27:199–204.']
  • ["Angilletta, M. J., P. H. Niewiarowski, A. E. Dunham, A. D. Leache, and W. P. Porter. 2004a. Bergmann's clines in ectotherms: illustrating a life‐history perspective with sceloporine lizards. American Naturalist 44:517–517."]
  • ['Angilletta, M. J., M. W. Sears, and T. D. Steury. 2004b. Temperature, growth rate, and body size in ectotherms: fitting pieces of a life history puzzle. Integrative and Comparative Biology 43:923–923.']
  • ['Avery, R. A. 1982. Field studies of body temperatures and thermoregulation. Pages 93–166 in C. Gans and F. H. Pough, eds. Biology of the Reptilia. Academic Press, New York.']
  • ['Bakken, G. S., W. R. Santee, and D. J. Erskine. 1985. Operative and standard operative temperature: tools for thermal energetics studies. American Zoologist 25:933–943.']
  • ['Ballinger, R. E. 1977. Reproductive strategies: food availability as a source of proximal variation in a lizard. Ecology 58:628–635.']
  • ['Barbault, R., and M. Maury. 1981. Ecological organization of a Chihuahuan desert lizard community. Oecologia (Berlin) 51:335–342.']
  • ['Bartlett, P. N., and D. M. Gates. 1967. The energy budget of a lizard on a tree trunk. Ecology 48:315–322.']
  • ['Buckley, L. B., and J. Roughgarden. 2005. Effect of species interactions on landscape abundance patterns. Journal of Animal Ecology 74:1182–1194.']
  • ['———. 2006. Climate, competition, and the coexistence of island lizards. Functional Ecology 20:315–322.']
  • ['Buckley, L. B., G. H. Rodda, and W. Jetz. 2008. Thermal and energetic constraints on ectotherm abundance: a global test using lizards. Ecology (forthcoming).']
  • ['Campbell, G., and J. Norman. 2000. An introduction to environmental biophysics. Springer, New York.']
  • ['Case, T. J., R. D. Holt, M. A. McPeek, and T. H. Keitt. 2005. The community context of species’ borders: ecological and evolutionary perspectives. Oikos 108:28–46.']
  • ['Chamaillé‐Jammes, S., M. Massot, P. Aragon, and J. Clobert. 2006. Global warming and positive fitness response in mountain populations of common lizards Lacerta vivipara. Global Change Biology 12:392–402.']
  • ['Conant, R., and J. T. Collins. 1998. A field guide to reptiles and amphibians of eastern and central North America. Houghton Mifflin, Boston.']
  • ['Congdon, J. D., A. E. Dunham, and D. W. Tinkle. 1982. Energy budgets and life histories of reptiles. Pages 233–271 in C. Gans and F. H. Pough, eds. Biology of the Reptilia. Academic Press, New York.']
  • ['Crowley, S. R. 1985. Thermal sensitivity of sprint‐running in the lizard Sceloporus undulatus: support for a conservative view of thermal physiology. Oecologia (Berlin) 66:219–225.']
  • ['Crozier, L., and G. Dwyer. 2006. Combining population‐dynamic and ecophysiological models to predict climate‐induced insect range shifts. American Naturalist 167:853–866.']
  • ['Derickson, W. K. 1976. Ecology and physiological aspects of reproductive strategies in two lizards. Ecology 57:445–458.']
  • ['Dobzhansky, T. 1950. Evolution in the tropics. American Scientist 38:209–221.']
  • ['Dunham, A. E. 1978. Food availability as a proximate factor influencing individual growth rates in the iguanid lizard Sceloporus merriami. Ecology 59:770–778.']
  • ['Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley. 2003. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. Journal of Geophysical Research 108:8851, doi:8810.1029/2002JD003296.']
  • ['Etterson, J. R., and R. G. Shaw. 2001. Constraint to adaptive evolution in response to global warming. Science 294:151–154.']
  • ['Ferguson, G. W., and T. Brockman. 1980. Geographic differences of growth rate of Sceloporus lizards (Sauria: Iguanidae). Copeia 1980:259–264.']
  • ['Forsythe, W. C., E. J. Rykiel, R. S. Stahl, H. I. Wu, and R. M. Schoolfield. 1995. A model comparison for daylength as a function of latitude and day of year. Ecological Modelling 80:87–95.']
  • ['Gates, D. M. 1980. Biophysical ecology. Springer, New York.']
  • ['Graham, R. W., E. L. Lundelius, M. A. Graham, E. K. Schroeder, R. S. Toomey, E. Anderson, A. D. Barnosky, et al. 1996. Spatial response of mammals to late quaternary environmental fluctuations. Science 272:1601–1606.']
  • ['Grant, B. W., and W. P. Porter. 1992. Modeling global macroclimatic constraints on ectotherm energy budgets. American Zoologist 32:154–178.']
  • ['Helmuth, B., C. D. G. Harley, P. M. Halpin, M. O’Donnell, G. E. Hofmann, and C. A. Blanchette. 2002. Climate change and latitudinal patterns of intertidal thermal stress. Science 498:1015–1017.']
  • ['Helmuth, B., J. G. Kingsolver, and E. Carrington. 2005. Biophysics, physiological ecology, and climate change: does mechanism matter? Annual Review of Physiology 67:177–201.']
  • ['Holt, R. D., and T. H. Keitt. 2005. Species’ borders: a unifying theme in ecology. Oikos 108:3–6.']
  • ['Huey, R. B., P. E. Hertz, and B. Sinervo. 2003. Behavioral drive versus behavioral inertia in evolution: a null model approach. American Naturalist 161:357–366.']
  • ['Irschick, D. J., and J. B. Losos. 1998. A comparative analysis of the ecological significance of maximal locomotor performance in Caribbean Anolis lizards. Evolution 52:219–226.']
  • ['Jones, S. M., R. E. Ballinger, and W. P. Porter. 1987. Physiological and environmental sources of variation in reproduction: prairie lizards in a food rich environment. Oikos 48:325–335.']
  • ['Kearney, M. 2006. Habitat, environment and niche: what are we modeling? Oikos 115:186–191.']
  • ['Kearney, M., and W. P. Porter. 2004. Mapping the fundamental niche: physiology, climate, and the distribution of a nocturnal lizard. Ecology 85:3119–3131.']
  • ['Leaché, A. D., and T. W. Reeder. 2002. Molecular systematics of the eastern fence lizard (Sceloporus undulatus): a comparison of parsimony, likelihood, and Bayesian approaches. Systematic Biology 51:44–68.']
  • ['Liu, B. Y. H., and R. C. Jordan. 1960. The interrelationship and characteristic distribution of direct, diffuse and total solar radiation. Solar Energy 4:1–19.']
  • ['Manel, S., H. C. Williams, and S. J. Ormerod. 2001. Evaluating presence‐absence models in ecology: the need to account for prevalence. Journal of Applied Ecology 38:921–931.']
  • ['Matthews, E. 1985. Atlas of archived vegetation, land‐use and seasonal albedo data sets. NASA Technical Memorandum 86199. NASA Goddard Institute for Space Studies, New York.']
  • ['Mitchell, J. W. 1976. Heat transfer from spheres and other animal forms. Biophysical Journal 16:561–569.']
  • ['Mitchell, K. E., D. Lohmann, P. R. Houser, E. F. Wood, J. C. Schaake, A. Robock, B. A. Cosgrove, et al. 2004. The multi‐institution North American Land Data Assimilation System (NLDAS): utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. Journal of Geophysical Research 109:1–32.']
  • ['Muth, A. 1977. Thermoregulatory postures and orientation to the sun: a mechanistic evaluation for the zebra‐tailed lizard, Callisaurus draconoides. Copeia 1977:710–720.']
  • ['———. 1980. Physiological ecology of desert iguana Dipsosaurus‐dorsalis eggs: temperature and water relations. Ecology 61:1335–1343.']
  • ['Nagy, K. A. 2005. Field metabolic rate and body size. Journal of Experimental Biology 208:1621–1625.']
  • ['New, M., D. Lister, M. Hulme, and I. Makin. 2002. A high‐resolution data set of surface climate over global land areas. Climate Research 21:1–25.']
  • ['Niewiarowski, P. H. 1994. Understanding geographic life‐history variation in lizards. Pages 31–49 in L. J. Vitt and E. R. Pianka, eds. Lizard ecology: historical and experimental perspectives. Princeton University Press, Princeton, NJ.']
  • ['Niewiarowski, P. H., and W. Roosenburg. 1993. Reciprocal transplant reveals sources of variation in growth rates of the lizard Sceloporus undulatus. Ecology 74:1992– 2002.']
  • ['Niewiarowski, P. H., M. J. Angilletta, and A. D. Leache. 2004. Phylogenetic comparative analysis of life‐history variation among populations of the lizard Sceloporus undulatus: an example and prognosis. Evolution 58:619–633.']
  • ['Norberg, J., D. P. Swaney, J. Dushoff, J. Lin, R. Casagrandi, and S. A. Levin. 2001. Phenotypic diversity and ecosystem functioning in changing environments: a theoretical framework. Proceedings of the National Academy of Sciences of the USA 98:11376–11381.']
  • ['Norris, K. S. 1965. Color adaptation in desert reptiles and its thermal relationships. Pages 162–229 in W. W. Milstead, ed. Lizard ecology: a symposium. University of Missouri Press, Columbia.']
  • ['Pacala, S. W., and J. A. Silander. 1985. Neighborhood models of plant population dynamics. 1. Single‐species models of annuals. American Naturalist 125:385–411.']
  • ['Parmesan, C., N. Ryrholm, C. Stefanescu, J. K. Hill, C. D. Thomas, H. Descimon, B. Huntley, et al. 1999. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399:579–583.']
  • ['Pearson, R. G., and T. P. Dawson. 2003. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography 12:361–371.']
  • ['Pearson, R. G., W. Thuiller, M. B. Araújo, E. Martinez‐Meyer, L. Brotons, C. McClean, L. Miles, P. Segurado, T. Dawson, and D. Lees. 2006. Model‐based uncertainty in species range prediction. Journal of Biogeography 33:1704–1711.']
  • ['Peterson, A. T., and D. A. Vieglais. 2001. Predicting species invasions using ecological niche modeling: new approaches from bioinformatics attack a pressing problem. BioScience 51:363–371.']
  • ['Porter, W. P., and F. C. James. 1979. Behavioral implications of mechanistic ecology. II. The African rainbow lizard, Agama agama. Copeia 1979:594–619.']
  • ['Porter, W. P., S. Budaraju, W. E. Stewart, and N. Ramankutty. 2000. Physiology on a landscape scale: applications in ecological theory and conservation practice. American Zoologist 40:1175–1176.']
  • ['Porter, W. P., J. L. Sabo, C. R. Tracy, O. J. Reichman, and N. Ramankutty. 2002. Physiology on a landscape scale: plant‐animal interactions. Integrative and Comparative Biology 42:431–453.']
  • ['Porter, W. P., N. P. Vakharia, W. D. Klousie, and D. Duffy. 2006. Po’ouli landscape bioinformatics models predict energetics, behavior, diets and distribution on Maui. Integrative and Comparative Biology 46:1143–1158.']
  • ['Pough, F. H. 1980. The advantages of ectothermy for tetrapods. American Naturalist 115:92–112.']
  • ['Pounds, J. A., M. P. L. Fogden, and J. H. Campbell. 1999. Biological response to climate change on a tropical mountain. Nature 398:611–615.']
  • ['Pulliam, H. R. 2000. On the relationship between niche and distribution. Ecology Letters 3:349–361.']
  • ['Reeder, T. W. 1995. Phylogenetic relationships among phrynosomatid lizards as inferred from mitochondrial ribosomal DNA sequences: substitutional bias and information content of transitions relative to transversions. Molecular Phylogenetics and Evolution 4:203–222.']
  • ['Reichle, D. E. 1971. Energy and nutrient metabolism of soil and litter invertebrates. Pages 465–475 in P. Devigneaud, ed. Productivity of forest ecosystems. UNESCO, Paris.']
  • ['Root, T. 1988. Energy constraints on avian distributions and abundances. Ecology 69:330–339.']
  • ['Root, T. L., J. T. Price, K. R. Hall, S. H. Schneider, C. Rosenzweig, and J. A. Pounds. 2003. Fingerprints of global warming on wild animals and plants. Nature 421:57–60.']
  • ['Rose, B. R. 1976. Habitat and prey selection of Sceloporus occidentalis and Sceloporus graciosus. Ecology 57:531–541.']
  • ['Roughgarden, J. 1997. Production functions from ecological populations. Pages 296–317 in D. Tilman and P. Kareiva, eds. Spatial ecology: the role of space in population dynamics and interspecific interactions. Princeton University Press, Princeton, NJ.']
  • ['Roughgarden, J., W. Porter, and D. Heckel. 1981. Resource partitioning of space and its relationship to body‐temperature in Anolis lizard populations. Oecologia (Berlin) 50:256–264.']
  • ['Ruby, D. E., and A. E. Dunham. 1987. Variation in home range size along an elevational gradient in the iguanid lizard Sceloporus merriami. Oecologia (Berlin) 71:473–480.']
  • ['Sala, O. E., F. S. Chapin III, J. J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber‐Sanwald, et al. 2000. Global biodiversity scenarios for the year 2100. Science 287:1770–1774.']
  • ['Schoener, T. W. 1977. Length‐weight regression in tropical and temperate forest‐understory insects. Annals of the Entomological Society of America 73:106–109.']
  • ['Sears, M. W. 2005. Geographic variation in the life history of the sagebrush lizard: the role of thermal constraints on activity. Oecologia (Berlin) 143:25–36.']
  • ['Sears, M. W., and M. J. Angilletta. 2004. Body size clines in Sceloporus lizards: proximate mechanisms and demographic constraints. Integrative and Comparative Biology 44:433–442.']
  • ['Sinervo, B., and S. C. Adolph. 1994. Growth plasticity and thermal opportunity in Sceloporus lizards. Ecology 75:776–790.']
  • ['Solomon, S., D. Qin, M. Manning, R. B. Alley, T. Berntsen, N. L. Bindoff, Z. Chen, et al. 2007. Technical summary. Pages 847–940 in S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, eds. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.']
  • ['Stebbins, R. C. 2003. A field guide to western reptiles and amphibians. Houghton Mifflin, Boston.']
  • ['Swinbank, W. C. 1963. Long‐wave radiation from clear skies. Quarterly Journal of the Royal Meteorological Society 89:339–348.']
  • ['Tinkle, D. W., and R. E. Ballinger. 1972. Sceloporus undulatus: a study of the intraspecific comparative demography of a lizard. Ecology 53:570–584.']
  • ['Tinkle, D. W., and N. F. Hadley. 1975. Lizard reproductive effort: caloric estimates and comments on its evolution. Ecology 56:427–434.']
  • ['Tinkle, D. W., A. E. Dunham, and J. D. Congdon. 1993. Life history and demographic variation in the lizard Sceloporus graciosus: a long‐term study. Ecology 74:2413–2429.']
  • ['Van Damme, R., and B. Vanhooydonck. 2001. Origins of interspecific variation in lizard sprint capacity. Functional Ecology 15:186–202.']
  • ['Vinegar, M. B. 1975. Life history phenomena in two populations of the lizard Sceloporus undulatus in southwestern New Mexico. American Midland Naturalist 93:388–402.']
  • ['Waldschmidt, S. 1983. The effect of supplemental feeding on home range size and activity patterns in the lizard Uta stansburiana. Oecologia (Berlin) 57:1–5.']
  • ['Waldschmidt, S. R., S. M. Jones, and W. P. Porter. 1986. The effect of body temperature and feeding regime on activity passage time and digestive coefficient in the lizard Uta stansburiana. Physiological zoology 59:376–383.']
  • ['Wilson, B. S. 1991. Latitudinal variation in activity season mortality rates of the lizard Uta stansburiana. Ecological Monographs 61:393–414.']