Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Genotypic and Environmental Effects on Flight Activity and Oviposition in the Glanville Fritillary Butterfly

Marjo Saastamoinen and Ilkka Hanski
The American Naturalist
Vol. 171, No. 6 (June 2008), pp. 701-712
DOI: 10.1086/587531
Stable URL: http://www.jstor.org/stable/10.1086/587531
Page Count: 12
  • Read Online (Free)
  • Download ($19.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Genotypic and Environmental Effects on Flight Activity and Oviposition in the Glanville Fritillary Butterfly
Preview not available

Abstract

Abstract: Adverse environmental conditions constrain active flight and thereby limit reproduction in most insects. Butterflies have evolved various adaptations in order to thermoregulate, allowing females to search for nectar and to oviposit under unfavorable thermal conditions. We studied experimentally and with observational data the effect of low ambient temperatures experienced in the morning on the timing of oviposition and clutch size in the Glanville fritillary butterfly (Melitaea cinxia). Comparisons were made between individuals with different forms of the gene Pgi, encoding the glycolytic enzyme phosphoglucose isomerase, since naturally segregating variation at Pgi is known to be correlated with flight metabolic rate, flight performance, and fecundity. Experiencing low temperature in the morning delayed the initiation of oviposition and decreased clutch size. We used a thermal image camera to measure the thoracic surface temperature of butterflies immediately after voluntary flight. Single nucleotide polymorphism at Pgi was associated with thoracic temperature at low ambient temperatures. This has consequences for reproduction because females that are able to fly at lower ambient temperatures generally initiate oviposition earlier in the afternoon, when the environmental conditions are most favorable and the average egg clutch size is generally largest. These results suggest that variation in physiological and molecular capacity to sustain active flight at low ambient temperature has significant fitness‐related consequences in insects.

Page Thumbnails

  • Thumbnail: Page 
1
    1
  • Thumbnail: Page 
2
    2
  • Thumbnail: Page 
3
    3
  • Thumbnail: Page 
4
    4
  • Thumbnail: Page 
5
    5
  • Thumbnail: Page 
6
    6
  • Thumbnail: Page 
7
    7
  • Thumbnail: Page 
8
    8
  • Thumbnail: Page 
9
    9
  • Thumbnail: Page 
10
    10
  • Thumbnail: Page 
11
    11
  • Thumbnail: Page 
12
    12