Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Accelerometry to Estimate Energy Expenditure during Activity: Best Practice with Data Loggers

L. G. Halsey, J. A. Green, R. P. Wilson and P. B. Frappell
Physiological and Biochemical Zoology: Ecological and Evolutionary Approaches
Vol. 82, No. 4 (July/August 2009), pp. 396-404
DOI: 10.1086/589815
Stable URL: http://www.jstor.org/stable/10.1086/589815
Page Count: 9
  • Read Online (Free)
  • Download ($19.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Accelerometry to Estimate Energy Expenditure during Activity: Best Practice with Data Loggers
Preview not available

Abstract

Abstract Measurement of acceleration can be a proxy for energy expenditure during movement. The variable overall dynamic body acceleration (ODBA), used in recent studies, combines the dynamic elements of acceleration recorded in all three dimensions to measure acceleration and hence energy expenditure due to body movement. However, the simplicity of ODBA affords it limitations. Furthermore, while accelerometry data loggers enable measures to be stored, recording at high frequencies represents a limit to deployment periods as a result of logger memory and/or battery exhaustion. Using bantam chickens walking at different speeds in a respirometer while wearing an accelerometer logger, we investigated the best proxies for rate of oxygen consumption ( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\dot{\mathrm{V}}\textsc{$o$}_{2}$ \end{document} ) from a range of different models using acceleration. We also investigated the effects of sampling acceleration at different frequencies. The best predictor of \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\dot{\mathrm{V}}\textsc{$o$}_{2}$ \end{document} was a multiple regression including individual measures of dynamic acceleration in each of the three dimensions. However, R2 was relatively high for ODBA as well and also for certain measures of dynamic acceleration in single dimensions. The aforementioned are single variables, therefore easily derived onboard a data logger and from which a simple calibration equation can be derived. For calibrations of \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\dot{\mathrm{V}}\textsc{$o$}_{2}$ \end{document} against ODBA, R2 was consistent as sampling number decreased down to 600 samples of each acceleration channel per ODBA data point, beyond which R2 tended to be considerably lower. In conclusion, data storage can be maximized when using acceleration as a proxy for \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\dot{\mathrm{V}}\textsc{$o$}_{2}$ \end{document} by consideration of reductions in (1) number of axes measured and (2) sampling frequency.

Page Thumbnails

  • Thumbnail: Page 
1
    1
  • Thumbnail: Page 
2
    2
  • Thumbnail: Page 
3
    3
  • Thumbnail: Page 
4
    4
  • Thumbnail: Page 
5
    5
  • Thumbnail: Page 
6
    6
  • Thumbnail: Page 
7
    7
  • Thumbnail: Page 
8
    8
  • Thumbnail: Page 
9
    9