Access

You are not currently logged in.

Access JSTOR through your library or other institution:

login

Log in through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Latitudinal Distribution, Migration, and Testosterone Levels in Birds

L. Z. Garamszegi, K. Hirschenhauser, V. Bókony, M. Eens, S. Hurtrez‐Boussès, A. P. Møller, R. F. Oliveira and J. C. Wingfield
The American Naturalist
Vol. 172, No. 4 (October 2008), pp. 533-546
DOI: 10.1086/590955
Stable URL: http://www.jstor.org/stable/10.1086/590955
Page Count: 14
  • Read Online (Free)
  • Download ($19.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Latitudinal Distribution, Migration, and Testosterone Levels in Birds
Preview not available

Abstract

Abstract: Tropical bird species usually have lower testosterone (T) levels during breeding than temperate species. However, the potential mechanisms behind the positive interspecific correlation between T and latitude remain unexplored. In a comparative study of more than 100 bird species, we examined whether social constraints during male‐male competition arising from migration and breeding synchrony are responsible for the latitude effects. Species that breed at higher latitudes are more likely to migrate and experience more intense intrasexual competition upon spring arrival than nonmigrant species from lower latitudes. Additionally, species from higher latitudes cope with shorter breeding seasons and thus with more synchronous breeding, which selects for high T titers via increased male‐male conflicts. Accordingly, peak T levels were associated with migration and the duration of the egg laying period that reflects breeding synchrony. Because migration and breeding synchrony were related to latitudinal distribution, they appear to be important components of the latitude effects on T. A multivariate model controlling for covariation of predictor variables revealed that latitude remained the strongest predictor of peak T. Therefore, selection due to migration and breeding synchrony may partially cause the latitude effect, but other geographically varying factors may also play a role in mediating peak T levels at different latitudes.

Page Thumbnails

  • Thumbnail: Page 
1
    1
  • Thumbnail: Page 
2
    2
  • Thumbnail: Page 
3
    3
  • Thumbnail: Page 
4
    4
  • Thumbnail: Page 
5
    5
  • Thumbnail: Page 
6
    6
  • Thumbnail: Page 
7
    7
  • Thumbnail: Page 
8
    8
  • Thumbnail: Page 
9
    9
  • Thumbnail: Page 
10
    10
  • Thumbnail: Page 
11
    11
  • Thumbnail: Page 
12
    12
  • Thumbnail: Page 
13
    13
  • Thumbnail: Page 
14
    14