Access

You are not currently logged in.

Access JSTOR through your library or other institution:

login

Log in through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Journal Article

Ecophysiological Influence on Scaling of Aerobic and Anaerobic Metabolism of Pelagic Gonatid Squids

Rui Rosa, Lloyd Trueblood and Brad A. Seibel
Physiological and Biochemical Zoology: Ecological and Evolutionary Approaches
Vol. 82, No. 5 (September/October 2009), pp. 419-429
DOI: 10.1086/591950
Stable URL: http://www.jstor.org/stable/10.1086/591950
Page Count: 11
Were these topics helpful?
See something inaccurate? Let us know!

Select the topics that are inaccurate.

Cancel
  • Read Online (Free)
  • Download ($19.00)
  • Subscribe ($19.50)
  • Add to My Lists
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Ecophysiological Influence on Scaling of Aerobic and Anaerobic Metabolism of Pelagic Gonatid Squids
Preview not available

Abstract

Abstract We examined the oxygen consumption rates and activity levels of respiratory enzymes involved in the aerobic (citrate synthase [CS]) and anaerobic (octopine dehydrogenase [ODH]) metabolism of gonatid squids (Gonatus onyx and Gonatus pyrus) as a function of body size. The energy expenditure rates of gonatids (ranging from 2.51 to 8.79 μmol O2 g−1 h−1 at 5°C) are among the highest in Animalia when mass and temperature are taken into account. They reflect the low efficiency of jet propulsion and the animals' active life strategy as diel vertical migrants in the pelagic environment. Both metabolic rate and aerobic muscle potential (CS activity) were size independent across a size range of four orders of magnitude, which may be a result of their unusual body geometric allometry, extensive cutaneous respiration, and decreased energy‐saving opportunities at larger sizes. Anaerobic metabolic potential (ODH activity) revealed a shift from positive scaling in juveniles to negative scaling among larger sizes. Juveniles are found in shallow water, where they are more susceptible to visually cued predators and require quicker size‐specific escape responses and higher burst swimming capacities. Conversely, adults have reduced requirements for predator/prey interactions in the light‐limited deep sea. Anaerobic metabolic scaling reflects an adaptive response to the changing physical and ecological demands across a depth gradient during this species's ontogenetic vertical migration.

Page Thumbnails

  • Thumbnail: Page 
1
    1
  • Thumbnail: Page 
2
    2
  • Thumbnail: Page 
3
    3
  • Thumbnail: Page 
4
    4
  • Thumbnail: Page 
5
    5
  • Thumbnail: Page 
6
    6
  • Thumbnail: Page 
7
    7
  • Thumbnail: Page 
8
    8
  • Thumbnail: Page 
9
    9
  • Thumbnail: Page 
10
    10
  • Thumbnail: Page 
11
    11