Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Flowering Life‐History Strategies Differ between the Native and Introduced Ranges of a Monocarpic Perennial

Jennifer L. Williams
The American Naturalist
Vol. 174, No. 5 (November 2009), pp. 660-672
DOI: 10.1086/605999
Stable URL: http://www.jstor.org/stable/10.1086/605999
Page Count: 13
  • Read Online (Free)
  • Download ($19.00)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Flowering Life‐History Strategies Differ between the Native and Introduced Ranges of a Monocarpic Perennial
Preview not available

Abstract

Abstract: Life‐history theory makes several key predictions about reproductive strategies on the basis of demographic vital rates, particularly the relationship between juvenile and adult survival. Two such predictions concern the optimal time to begin reproducing and whether semelparity or iteroparity is favored. I tested these life‐history predictions and explored how they might differ between the native and introduced ranges of the monocarpic perennial Cynoglossum officinale. I first compared vital rates between ranges. I then used these vital rates to parameterize integral projection models to calculate the population growth rate (λ) and net reproductive rate ( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $R_{0}$ \end{document} ) as surrogates for fitness to compare strategies within and between ranges. I found that both survival and growth were higher in the introduced range, where size at flowering was larger and iteroparity was much more common than in the native range. The observed and predicted strategies for size at flowering were similar in the native range. In the introduced range, however, even though plants flowered at a larger size, the observed size was not as large as the optimum predicted by λ or the higher optimum predicted by \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $R_{0}$ \end{document} . Iteroparity conferred higher fitness in both ranges, as measured by both fitness metrics, suggesting that severe constraints, potentially specialist herbivores, prevent this strategy from becoming more common in the native range.

Page Thumbnails

  • Thumbnail: Page 
1
    1
  • Thumbnail: Page 
2
    2
  • Thumbnail: Page 
3
    3
  • Thumbnail: Page 
4
    4
  • Thumbnail: Page 
5
    5
  • Thumbnail: Page 
6
    6
  • Thumbnail: Page 
7
    7
  • Thumbnail: Page 
8
    8
  • Thumbnail: Page 
9
    9
  • Thumbnail: Page 
10
    10
  • Thumbnail: Page 
11
    11
  • Thumbnail: Page 
12
    12
  • Thumbnail: Page 
13
    13