Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Pollination Efficiency and the Evolution of Specialized Deceptive Pollination Systems

Giovanni Scopece, Salvatore Cozzolino, Steven D. Johnson and Florian P. Schiestl
The American Naturalist
Vol. 175, No. 1 (January 2010), pp. 98-105
DOI: 10.1086/648555
Stable URL: http://www.jstor.org/stable/10.1086/648555
Page Count: 8
  • Read Online (Free)
  • Download ($19.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Pollination Efficiency and the Evolution of Specialized Deceptive Pollination Systems
Preview not available

Abstract

Abstract: The ultimate causes of evolution of highly specialized pollination systems are little understood. We investigated the relationship between specialization and pollination efficiency, defined as the proportion of pollinated flowers relative to those that experienced pollen removal, using orchids with different pollination strategies as a model system. Rewarding orchids showed the highest pollination efficiency. Sexually deceptive orchids had comparably high pollination efficiency, but food‐deceptive orchids had significantly lower efficiency. Values for pollinator sharing (a measure of the degree of generalization in pollination systems) showed the reverse pattern, in that groups with high pollination efficiency had low values of pollinator sharing. Low pollinator sharing may thus be the basis for efficient pollination. Population genetic data indicated that both food‐ and sexually deceptive species have higher degrees of among‐population gene flow than do rewarding orchids. Thus, the shift from food to sexual deception may be driven by selection for more efficient pollination, without compromising the high levels of gene flow that are characteristic of deceptive species.

Page Thumbnails

  • Thumbnail: Page 
1
    1
  • Thumbnail: Page 
2
    2
  • Thumbnail: Page 
3
    3
  • Thumbnail: Page 
4
    4
  • Thumbnail: Page 
5
    5
  • Thumbnail: Page 
6
    6
  • Thumbnail: Page 
7
    7
  • Thumbnail: Page 
8
    8