Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Niche Conservatism Drives Elevational Diversity Patterns in Appalachian Salamanders

Kenneth H. Kozak and John J. Wiens
The American Naturalist
Vol. 176, No. 1 (July 2010), pp. 40-54
DOI: 10.1086/653031
Stable URL: http://www.jstor.org/stable/10.1086/653031
Page Count: 15
  • Read Online (Free)
  • Download ($19.00)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Niche Conservatism Drives Elevational Diversity Patterns in Appalachian Salamanders
Preview not available

Abstract

Abstract: Many biodiversity hotspots are in montane regions, and many plant and animal groups have their highest species richness at intermediate elevations. Yet, the explanation for this hump‐shaped diversity pattern has remained unclear because no studies have addressed both the ecological and evolutionary causes. Here, we address these causes in North American plethodontid salamanders, using a near‐comprehensive phylogeny and environmental data. We develop a null model for assessing the relationship between the time that an area has been occupied and its species richness, and we apply a new approach that tests whether clades exhibit long‐term stasis in their climatic niches (niche conservatism). Evolutionarily, the midelevation peak in species richness is explained by the time‐for‐speciation effect, with intermediate‐elevation habitats seemingly being inhabited longest and accumulating more species. We find that this pattern is associated with evolutionary stasis in species’ climatic niches, driving the midelevation peak by constraining the dispersal of lineages to environments at lower and higher elevations. These processes may help explain elevational diversity patterns in many montane regions around the world. The results also suggest that montane biotas may harbor high levels of both species diversity and phylogenetic diversity but may be particularly susceptible to rapid climate change.

Page Thumbnails

  • Thumbnail: Page 
1
    1
  • Thumbnail: Page 
2
    2
  • Thumbnail: Page 
3
    3
  • Thumbnail: Page 
4
    4
  • Thumbnail: Page 
5
    5
  • Thumbnail: Page 
6
    6
  • Thumbnail: Page 
7
    7
  • Thumbnail: Page 
8
    8
  • Thumbnail: Page 
9
    9
  • Thumbnail: Page 
10
    10
  • Thumbnail: Page 
11
    11
  • Thumbnail: Page 
12
    12
  • Thumbnail: Page 
13
    13
  • Thumbnail: Page 
14
    14
  • Thumbnail: Page 
15
    15