Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Hidden Consequences of Living in a Wormy World: Nematode‐Induced Immune Suppression Facilitates Tuberculosis Invasion in African Buffalo

Vanessa O. Ezenwa, Rampal S. Etienne, Gordon Luikart, Albano Beja‐Pereira and Anna E. Jolles
The American Naturalist
Vol. 176, No. 5 (November 2010), pp. 613-624
DOI: 10.1086/656496
Stable URL: http://www.jstor.org/stable/10.1086/656496
Page Count: 12
  • Read Online (Free)
  • Download ($19.00)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Hidden Consequences of Living in a Wormy World: Nematode‐Induced Immune Suppression Facilitates Tuberculosis Invasion in African Buffalo
Preview not available

Abstract

Abstract: Most hosts are infected with multiple parasites, and responses of the immune system to co‐occurring parasites may influence disease spread. Helminth infection can bias the host immune response toward a T‐helper type 2 (Th2) over a type 1 (Th1) response, impairing the host’s ability to control concurrent intracellular microparasite infections and potentially modifying disease dynamics. In humans, immune‐mediated interactions between helminths and microparasites can alter host susceptibility to diseases such as HIV, tuberculosis (TB), and malaria. However, the extent to which similar processes operate in natural animal populations and influence disease spread remains unknown. We used cross‐sectional, experimental, and genetic studies to show that gastrointestinal nematode infection alters immunity to intracellular microparasites in free‐ranging African buffalo (Syncerus caffer). Buffalo that were more resistant to nematode infection had weaker Th1 responses, there was significant genotypic variation in nematode resistance, and anthelminthic treatment enhanced Th1 immunity. Using a disease dynamic model parameterized with empirical data, we found that nematode‐induced immune suppression can facilitate the invasion of bovine TB in buffalo. In the absence of nematodes, TB failed to invade the system, illustrating the critical role nematodes may play in disease establishment. Our results suggest that helminths, by influencing the likelihood of microparasite invasion, may influence patterns of disease emergence in the wild.

Page Thumbnails

  • Thumbnail: Page 
1
    1
  • Thumbnail: Page 
2
    2
  • Thumbnail: Page 
3
    3
  • Thumbnail: Page 
4
    4
  • Thumbnail: Page 
5
    5
  • Thumbnail: Page 
6
    6
  • Thumbnail: Page 
7
    7
  • Thumbnail: Page 
8
    8
  • Thumbnail: Page 
9
    9
  • Thumbnail: Page 
10
    10
  • Thumbnail: Page 
11
    11
  • Thumbnail: Page 
12
    12