If you need an accessible version of this item please contact JSTOR User Support

Morphologic Clues to the Origins of Iron Oxide–Cemented Spheroids, Boxworks, and Pipelike Concretions, Navajo Sandstone of South-Central Utah, U.S.A.

David B. Loope, Richard M. Kettler and Karrie A. Weber
The Journal of Geology
Vol. 119, No. 5 (September 2011), pp. 505-520
DOI: 10.1086/661110
Stable URL: http://www.jstor.org/stable/10.1086/661110
Page Count: 16
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
Morphologic Clues to the Origins of Iron Oxide–Cemented Spheroids, Boxworks, and Pipelike Concretions, Navajo Sandstone of South-Central Utah, U.S.A.
Preview not available

Abstract

AbstractConcretions cemented by iron oxide are abundant and diverse in the Jurassic Navajo Sandstone of southern Utah. Some of these structures are considered terrestrial analogs for concretions imaged on Mars. The Navajo concretions can be spheroidal, pipelike, or tabular with multicompartmented boxworks. These iron oxide concretions typically display a rinded structure: dense sandstone rinds cemented by iron oxide surround pale, iron-poor sandstone cores. Within a single structure, the iron-rich rinds may be single or multiple. Pseudomorphs of siderite are present in local residual, iron-rich cores of boxworks. Workers in the late nineteenth through mid-twentieth centuries, many of whom found evidence for siderite precusors, concluded that many spherical, rinded, iron oxide-cemented concretions were formed by centripetal precipitation of iron oxide inward from the perimeter of the concretion; in contrast, the walls of pipelike concretions of iron oxide grew centrifugally outward. We interpret the Navajo spheroids and boxworks as centripetal products of the oxidation of siderite-cemented (precursor) concretions that were very similar in both size and shape to the current concretions: rinds grew (thickened) inward toward the internal source of Fe(II). Siderite pseudomorphs appear to be absent from spheroids and many boxworks because all siderite was dissolved. In the cores of the larger boxworks some siderite was oxidized in situ; the Fe(II) did not migrate away from the original siderite crystals. The oxidation process was mediated by iron-oxidizing microbes and began at concretion perimeters when oxidizing groundwater started to displace the CO2- and methane-bearing water that had precipitated the siderite. In contrast, pipelike concretions are centrifugal—rinds formed around a cylindrical reaction front and thickened outward toward Fe(II) and away from the oxygenated water flowing within the cylinders. The cylindrical shape of the reaction front was produced by self-organizing feedbacks between dissolution of dispersed siderite cement and focused flow through a heterogeneous sandstone matrix.

Page Thumbnails

  • Thumbnail: Page 
1
    1
  • Thumbnail: Page 
2
    2
  • Thumbnail: Page 
3
    3
  • Thumbnail: Page 
4
    4
  • Thumbnail: Page 
5
    5
  • Thumbnail: Page 
6
    6
  • Thumbnail: Page 
7
    7
  • Thumbnail: Page 
8
    8
  • Thumbnail: Page 
9
    9
  • Thumbnail: Page 
10
    10
  • Thumbnail: Page 
11
    11
  • Thumbnail: Page 
12
    12
  • Thumbnail: Page 
13
    13
  • Thumbnail: Page 
14
    14
  • Thumbnail: Page 
15
    15
  • Thumbnail: Page 
16
    16