Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Optimal Cosmic-Ray Detection for Nondestructive Read Ramps

Rachel E. Anderson and Karl D. Gordon
Publications of the Astronomical Society of the Pacific
Vol. 123, No. 908 (October 2011), pp. 1237-1248
DOI: 10.1086/662593
Stable URL: http://www.jstor.org/stable/10.1086/662593
Page Count: 12
Subjects: Astronomy
Find more content in these subjects: Astronomy
  • Download PDF
  • Add to My Lists
  • Cite this Item
We're having trouble loading this content. Download PDF instead.

Abstract

ABSTRACT.Cosmic rays are a known problem in astronomy, causing both loss of data and data inaccuracy. The problem becomes even more extreme when considering data from a high-radiation environment, such as in orbit around Earth or outside the Earth’s magnetic field altogether, unprotected, as will be the case for the James Webb Space Telescope (JWST). For JWST, all the instruments employ nondestructive readout schemes. The most common of these will be “up the ramp” sampling, where the detector is read out regularly during the ramp. We study three methods to correct for cosmic rays in these ramps: a two-point difference method, a deviation from the fit method, and a yy-intercept method. We apply these methods to simulated nondestructive read ramps with single-sample groups and varying combinations of flux, number of samples, number of cosmic rays, cosmic-ray location in the exposure, and cosmic-ray strength. We show that the yy-intercept method is the optimal detection method in the read-noise-dominated regime, while both the yy-intercept method and the two-point difference method are best in the photon-noise-dominated regime, with the latter requiring fewer computations.

Notes and References

This item contains 18 references.

REFERENCES
  • ['Dahlen, T., et al. 2008, Instrument Science Rep. NICMOS 2008-002 (Baltimore: STScI)']
  • ['Dressel, L. 2010, Wide Field Camera 3 Instrument Handbook, Version 3.0 (Baltimore: STScI)']
  • ['Fazio, G. G., Houck, J. R., Kelly, T., Rieke, G. H., Tenerelli, D. J., & Whitten, M. 1998, Proc. SPIE, 3356, 478']
  • ['Fixsen, D. J., Offenberg, J. D., Hanisch, R. J., Mather, J. C., Nieto-Santisteban, M. A., Sengupta, R., & Stockman, H. S. 2000, PASP, 112, 1350']
  • ['Gordon, K. D., et al. 2005, PASP, 117, 503']
  • ['Hogg, D. W., Bovy, J., & Lang, D. 2010, ArXiv e-prints']
  • ['Offenberg, J. D., Sengupta, R., Fixsen, D. J., Stockman, P., Nieto-Santisteban, M., Stallcup, S., Hanisch, R., & Mather, J. C. 1999, in ASP Conf. Ser. 172, Astronomical Data Analysis Software and Systems VIII, ed. D. M., Mehringer, R. L., Plante, & D. A., Roberts (San Francisco: ASP), 141']
  • ['Offenberg, J. D., et al. 2001, PASP, 113, 240']
  • ['Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. 1986, Numerical Recipes: The Art of Scientific Computing, (Cambridge: Cambridge Univ. Press)']
  • ['Rauscher, B. J., et al. 2007, PASP, 119, 768 (erratum 122, 1254 [2010])']
  • ['Rieke, G. H. 2007, ARA&A, 45, 77']
  • ['Robberto, M. 2008, WIT Rep. JWST-STSCI-0001490, SM-12 (Baltimore: STScI)']
  • ['——— 2009a, WIT Rep. JWST-STScI-001928, SM-12 (Baltimore: STScI)']
  • ['——— 2009b, WIT Rep. JWST-STScI-001853, SM-12 (Baltimore: STScI)']
  • ['——— 2009c, WIT Rep. JWST-STScI-001928, SM-12 (Baltimore: STScI)']
  • ['Tian, Z., Ji, R., Lei, S., & Gu, B. Q. 1996, Proc. SPIE, 2894, 174']
  • ['Viana, A., Wiklind, H., et al. 2009, NICMOS Instrument Handbook, Version 11.0 (Baltimore: STScI)']
  • ['Windhorst, R. A., Franklin, B. E., & Neuschaefer, L. W. 1994, PASP, 106, 798']