Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

UV Photoreceptors and UV-Yellow Wing Pigments in Heliconius Butterflies Allow a Color Signal to Serve both Mimicry and Intraspecific Communication

Seth M. Bybee, Furong Yuan, Monica D. Ramstetter, Jorge Llorente-Bousquets, Robert D. Reed, Daniel Osorio and Adriana D. Briscoe
The American Naturalist
Vol. 179, No. 1 (January 2012), pp. 38-51
DOI: 10.1086/663192
Stable URL: http://www.jstor.org/stable/10.1086/663192
Page Count: 14
  • Read Online (Free)
  • Download ($19.00)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
UV Photoreceptors and UV-Yellow Wing Pigments in Heliconius Butterflies Allow a Color Signal to Serve both Mimicry and Intraspecific Communication
Preview not available

Abstract

AbstractMimetic wing coloration evolves in butterflies in the context of predator confusion. Unless butterfly eyes have adaptations for discriminating mimetic color variation, mimicry also carries a risk of confusion for the butterflies themselves. Heliconius butterfly eyes, which express recently duplicated ultraviolet (UV) opsins, have such an adaptation. To examine bird and butterfly color vision as sources of selection on butterfly coloration, we studied yellow wing pigmentation in the tribe Heliconiini. We confirmed, using reflectance and mass spectrometry, that only Heliconius use 3-hydroxy-DL-kynurenine (3-OHK), which looks yellow to humans but reflects both UV- and long-wavelength light, whereas butterflies in related genera have chemically unknown yellow pigments mostly lacking UV reflectance. Modeling of these color signals reveals that the two UV photoreceptors of Heliconius are better suited to separating 3-OHK from non-3-OHK spectra compared with the photoreceptors of related genera or birds. The co-occurrence of potentially enhanced UV vision and a UV-reflecting yellow wing pigment could allow unpalatable Heliconius private intraspecific communication in the presence of mimics. Our results are the best available evidence for the correlated evolution of a color signal and color vision. They also suggest that predator visual systems are error prone in the context of mimicry.

Page Thumbnails

  • Thumbnail: Page 
1
    1
  • Thumbnail: Page 
2
    2
  • Thumbnail: Page 
3
    3
  • Thumbnail: Page 
4
    4
  • Thumbnail: Page 
5
    5
  • Thumbnail: Page 
6
    6
  • Thumbnail: Page 
7
    7
  • Thumbnail: Page 
8
    8
  • Thumbnail: Page 
9
    9
  • Thumbnail: Page 
10
    10
  • Thumbnail: Page 
11
    11
  • Thumbnail: Page 
12
    12
  • Thumbnail: Page 
13
    13
  • Thumbnail: Page 
14
    14