Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Ontogeny Tends to Recapitulate Phylogeny in Digital Organisms

Jeff Clune, Robert T. Pennock, Charles Ofria and Richard E. Lenski
The American Naturalist
Vol. 180, No. 3 (September 2012), pp. E54-E63
DOI: 10.1086/666984
Stable URL: http://www.jstor.org/stable/10.1086/666984
Page Count: 10
  • Download PDF
  • Add to My Lists
  • Cite this Item
Ontogeny Tends to Recapitulate Phylogeny in Digital Organisms
We're having trouble loading this content. Download PDF instead.

Abstract

AbstractBiologists have long debated whether ontogeny recapitulates phylogeny and, if so, why. Two plausible explanations are that (i) changes to early developmental stages are selected against because they tend to disrupt later development and (ii) simpler structures often precede more complex ones in both ontogeny and phylogeny if the former serve as building blocks for the latter. It is difficult to test these hypotheses experimentally in natural systems, so we used a computational system that exhibits evolutionary dynamics. We observed that ontogeny does indeed recapitulate phylogeny; traits that arose earlier in a lineage’s history also tended to be expressed earlier in the development of individuals. The relative complexity of traits contributed substantially to this correlation, but a significant tendency toward recapitulation remained even after accounting for trait complexity. This additional effect provides evidence that selection against developmental disruption also contributed to the conservation of early stages in development.

Notes and References

This item contains 43 references.

Literature Cited
  • ['Adami, C., C. Ofria, and T. C. Collier. 2000. Evolution of biological complexity. Proceedings of the National Academy of Sciences of the USA 97:4463–4468.']
  • ['Arthur, W. 2002. The emerging conceptual framework of evolutionary developmental biology. Nature 415:757–764.']
  • ['Cangelosi, A. 1999. Heterochrony and adaptation in developing neural networks. Proceedings of the Genetic and Evolutionary Computation Conference 2:1241–1248.']
  • ['Chow, S. S., C. O. Wilke, C. Ofria, R. E. Lenski, and C. Adami. 2004. Adaptive radiation from resource competition in digital organisms. Science 305:84–86.']
  • ['Clune, J., H. Goldsby, C. Ofria, and R. T. Pennock. 2010. Selective pressures for accurate altruism targeting: evidence from digital evolution for difficult-to-test aspects of inclusive fitness theory. Proceedings of the Royal Society B: Biological Sciences 278:666–674.']
  • ['Clune, J., D. Misevic, C. Ofria, R. E. Lenski, S. F. Elena, and R. Sanjuán. 2008. Natural selection fails to optimize mutation rates for long-term adaptation on rugged fitness landscapes. PLoS Computational Biology 4:e1000187.']
  • ['Darwin, C. 1859. On the origin of species by means of natural selection. J. Murray, London.']
  • ['Davidson, E. H. 2001. Genomic regulatory systems: development and evolution. Academic Press, San Diego.']
  • ['Davidson, E. H., and D. H. Erwin. 2006. Gene regulatory networks and the evolution of animal body plans. Science 311:796–800.']
  • ['Dennett, D. C. 2002. The new replicators. Pages E83–E92 in M. Pagel, ed. The encyclopedia of evolution. Oxford University Press, Oxford, UK.']
  • ['Ekstig, B. 1994. Condensation of developmental stages and evolution. BioScience 44:158–164.']
  • ['Emlen, J. M. 1984. Population biology. Macmillan, New York.']
  • ['Galis, F., T. J. M. van Dooren, and J. A. J. Metz. 2002. Conservation of the segmented germband stage: robustness or pleiotropy? Trends in Genetics 18:504–509.']
  • ['Galis, F. and J. A. J. Metz. 2001. Testing the vulnerability of the phylotypic stage: on modularity and evolutionary conservation. Journal of Experimental Zoology 291:195–204.']
  • ['Goings, S., J. Clune, C. Ofria, and R. T. Pennock. 2004. Kin selection: the rise and fall of kin-cheaters. Pp. 303–308 in J. Pollack, M. Bedau, P. Husbands, T. Ikegami, and R. Watson, eds. Artificial Life: Proceedings of the 9th International Conference on Artificial Life. MIT Press, Cambridge, MA.']
  • ['Gould, S. J. 1977. Ontogeny and phylogeny. Belknap, Cambridge, MA.']
  • ['———. 1984. Relationship of individual and group change. Human Development 27:233–239.']
  • ['———. 1996. Full house. Three Rivers, New York.']
  • ['Gould, S. J., and R. C. Lewontin. 1979. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proceedings of the Royal Society B: Biological Sciences 205:581–598.']
  • ['Haeckel, E. 1866. Generelle Morphologie der Organismen. G. Reimer, Berlin.']
  • ['Horder, T. 2008. A history of evo-devo in Britain. Theoretical ideals confront with biological complexity. Annals of the History and Philosophy of Biology 13:101–174.']
  • ['Lenski, R. E., C. Ofria, T. C. Collier, and C. Adami. 1999. Genome complexity, robustness and genetic interactions in digital organisms. Nature 400:661–664.']
  • ['Lenski, R. E., C. Ofria, R. T. Pennock, and C. Adami. 2003. The evolutionary origin of complex features. Nature 423:139–144.']
  • ['Levinton, J. S. 1988. Genetics, paleontology, and macroevolution. Cambridge University Press, New York.']
  • ['Lovejoy, N. R. 2000. Reinterpreting recapitulation: systematics of needlefishes and their allies (Teleostei: Beloniformes). Evolution 54:1349–1362.']
  • ['Matos, A., R. Suzuki, and T. Arita. 2005. Evolution of development and heterochrony in artificial neural networks. Proceedings of the 10th International Symposium on Artificial Life and Robotics: 635–638.']
  • ['Mayr, E. 1994. Recapitulation reinterpreted: the somatic program. Quarterly Review of Biology 69:223–232.']
  • ['McKinney, M. L., and K. McNamara. 1991. Heterochrony: the evolution of ontogeny. Plenum, New York.']
  • ['Meckel, J. 1811. Entwurf einer Darstellung der zwischen den Embryonalzustanden der hoheren Tiere und den permanenten der niederen stattfindenden Parallele. Beiträge zur vergleichenden Anatomie 2:1–60.']
  • ['Misevic, D., C. Ofria, and R. E. Lenski. 2006. Sexual reproduction reshapes the genetic architecture of digital organisms. Proceedings of the Royal Society B: Biological Sciences 273:457–464.']
  • ['Müller, F. 1869. Facts and arguments for Darwin. Translated by W. S. Dallas. J. Murray, London.']
  • ['Nolfi, S., and D. Parisi. 1995. Evolving artificial neural networks that develop in time. Pp. 353–367 in F. Morán, A. Murenu, J. J. Merelu, and P. Chacin, eds. Advances in Artificial Life. Springer, Berlin.']
  • ['Ofria, C., C. Adami, and T. C. Collier. 2002. Design of evolvable computer languages. IEEE Transactions on Evolutionary Computation 6:420–424.']
  • ['Ofria, C., and C. O. Wilke. 2004. Avida: a software platform for research in computational evolutionary biology. Artificial Life 10:191–229.']
  • ['Pennock, R. T. 2007. Models, simulations, instantiations and evidence: the case of digital evolution. Journal of Experimental and Theoretical Artificial Intelligence 19:29–42.']
  • ['Raff, R. A. 1996. The shape of life: genes, development, and the evolution of animal form. University of Chicago Press, Chicago.']
  • ['Richardson, M. K., J. Hanken, M. L. Gooneratne, C. Pieau, A. Raynaud, L. Selwood, and G. M. Wright. 1997. There is no highly conserved embryonic stage in the vertebrates: implications for current theories of evolution and development. Anatomy and Embryology 196:91–106.']
  • ['Sander, K., and U. Schmidt-Ott. 2004. Evo-devo aspects of classical and molecular data in a historical perspective. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution 302:69–91.']
  • ['Sokal, R., and F. J. Rohlf. 1995. Biometry. Freeman, San Francisco.']
  • ['Stearns, S. C. 1992. The evolution of life histories. Oxford University Press, Oxford.']
  • ['Wilke, C. O., J. L. Wang, C. Ofria, R. E. Lenski, and C. Adami. 2001. Evolution of digital organisms at high mutation rates leads to survival of the flattest. Nature 412:331–333.']
  • ['Williams, G. C. 1957. Pleiotropy, natural selection, and the evolution of senescence. Evolution 11:398–411.']
  • ['von Baer, K. 1828. Entwicklungsgeschichte der Thiere: Beobachtungen und Reflexionen. Bornträger, Königsberg.']