If you need an accessible version of this item please contact JSTOR User Support

Limited Oxygen Availability In Utero May Constrain the Evolution of Live Birth in Reptiles

Anthony R. Rafferty, Roger G. Evans, T. Franciscus Scheelings and Richard D. Reina
The American Naturalist
Vol. 181, No. 2 (February 2013), pp. 245-253
DOI: 10.1086/668827
Stable URL: http://www.jstor.org/stable/10.1086/668827
Page Count: 9
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
Limited Oxygen Availability In Utero May Constrain the Evolution of
                    Live Birth in Reptiles
Preview not available

Abstract

Abstract Although viviparity (live birth) has evolved from oviparity (egg laying) at least 140 times in vertebrates, nearly 120 of these independent events occurred within a single reptile taxon. Surprisingly, only squamate reptiles (lizards and snakes) are capable of facilitating embryonic development to increasingly advanced stages inside the mother during extended periods of oviducal egg retention. Viviparity has never evolved in turtle lineages, presumably because embryos enter and remain in an arrested state until after eggs are laid, regardless of the duration of egg retention. Until now, the limiting factor that initiates and maintains developmental arrest has remained elusive. Here, we show that oviducal hypoxia arrests embryonic development. We demonstrate that hypoxia can maintain developmental arrest after oviposition and that subsequent exposure of arrested embryos to normoxia triggers resumption of their development. We discovered remarkably low oxygen partial pressure in the oviducts of gravid turtles and found that secretions produced by the oviduct retard oxygen diffusion. Our results suggest that an extremely hypoxic environment in the oviduct arrests embryonic development and may constrain the evolution of viviparity in turtles, with the reduced diffusive capacity of oviducal secretions possibly creating or contributing to this hypoxia. We anticipate that these findings will allow us to better understand the mechanisms underlying the evolutionary transition between reproductive modes.

Page Thumbnails

  • Thumbnail: Page 
1
    1
  • Thumbnail: Page 
2
    2
  • Thumbnail: Page 
3
    3
  • Thumbnail: Page 
4
    4
  • Thumbnail: Page 
5
    5
  • Thumbnail: Page 
6
    6
  • Thumbnail: Page 
7
    7
  • Thumbnail: Page 
8
    8
  • Thumbnail: Page 
9
    9