Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Early Paleozoic Tectonic Evolution of the South Tianshan Collisional Belt: Evidence from Geochemistry and Zircon U-Pb Geochronology of the Tie’reke Monzonite Pluton, Northwest China

He Huang, Zhaochong Zhang, M. Santosh, Dongyang Zhang, Zhidan Zhao and Junlai Liu
The Journal of Geology
Vol. 121, No. 4 (July 2013), pp. 401-424
DOI: 10.1086/670653
Stable URL: http://www.jstor.org/stable/10.1086/670653
Page Count: 24
  • Subscribe ($19.50)
  • Cite this Item
Early Paleozoic Tectonic Evolution of the South Tianshan Collisional Belt: Evidence from Geochemistry and Zircon U-Pb Geochronology of the Tie’reke Monzonite Pluton, Northwest China
Preview not available

Abstract

AbstractWe report an Early Paleozoic hornblende quartz monzonitic pluton from the Tie’reke region in the central South Tianshan Collisional Belt (STCB). Laser ablation ICP-MS U-Pb zircon dating reveals that the pluton was emplaced during the Late Silurian at ∼ Ma. Our data, together with those from coeval intrusive rocks in the eastern STCB and the eastern Northern Margin of the Tarim Block (NMTB), indicate a major late Early Paleozoic magmatic event in the region. This magmatic event is supported by a detrital zircon U-Pb age population of 462–395 Ma obtained from a Cenozoic sandstone sample from the Kangsu region and an Early Paleozoic metasandstone sample from the Jigen region. Geochemically, the Tie’reke pluton is intermediate in composition, with SiO2 contents ranging from 60.73 to 64.73 wt%, and belongs to the alkali-calcic and shoshonitic series. The pluton displays relative depletion of Nb, Ta, P, and Ti and enrichment of large-ion lithophile elements (Ba, K, and Rb), typical of continental arc–related igneous rocks. Whole-rock Sr-Nd and zircon Hf isotopic data reveal that the magma was derived dominantly from partial melting of the Paleoproterozoic continental crust, with input from juvenile materials from a depleted-mantle wedge. In general, geochronological, geochemical, and isotopic features of the Late Silurian igneous rocks in the present STCB and NMTB, coupled with detrital zircon U-Pb geochronological data from the two sedimentary rocks, suggest that the northern margin of the Paleozoic Tarim Block was an Andean-type active continental margin during Middle Ordovician to Middle Devonian time. Given the coeval magmatism in the Central Tianshan Block, which necessitates a northward subduction of the Paleozoic South Tianshan Ocean, we propose a double-subduction model for the evolution of the Paleozoic South Tianshan Ocean during the Late Ordovician to Middle Devonian period. During the Late Devonian to Middle Carboniferous, the northern margin of the Paleozoic Tarim Block was likely characterized by tectonomagmatic quiescence, whereas the Central Tianshan Block was still extensively affected by arc-type magmatism, furthering the northward subduction of the Paleozoic South Tianshan Ocean.

Page Thumbnails

  • Thumbnail: Page 
1
    1
  • Thumbnail: Page 
2
    2
  • Thumbnail: Page 
3
    3
  • Thumbnail: Page 
4
    4
  • Thumbnail: Page 
5
    5
  • Thumbnail: Page 
6
    6
  • Thumbnail: Page 
7
    7
  • Thumbnail: Page 
8
    8
  • Thumbnail: Page 
9
    9
  • Thumbnail: Page 
10
    10
  • Thumbnail: Page 
11
    11
  • Thumbnail: Page 
12
    12
  • Thumbnail: Page 
13
    13
  • Thumbnail: Page 
14
    14
  • Thumbnail: Page 
15
    15
  • Thumbnail: Page 
16
    16
  • Thumbnail: Page 
17
    17
  • Thumbnail: Page 
18
    18
  • Thumbnail: Page 
19
    19
  • Thumbnail: Page 
20
    20
  • Thumbnail: Page 
21
    21
  • Thumbnail: Page 
22
    22
  • Thumbnail: Page 
23
    23
  • Thumbnail: Page 
24
    24