If you need an accessible version of this item please contact JSTOR User Support

Optical and Physicochemical Characterization of the Luminous Mucous Secreted by the Marine Worm Chaetopterus sp.

Dimitri D. Deheyn, Laura A. Enzor, Andrew Dubowitz, Jeffrey S. Urbach and Daniel Blair
Physiological and Biochemical Zoology: Ecological and Evolutionary Approaches
Vol. 86, No. 6 (November/December 2013), pp. 702-715
DOI: 10.1086/673869
Stable URL: http://www.jstor.org/stable/10.1086/673869
Page Count: 14
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
Optical and Physicochemical Characterization of the Luminous Mucous Secreted by the Marine Worm Chaetopterus sp.
Preview not available

Abstract

AbstractBioluminescence of the marine worm Chaetopterus variopedatus was first investigated several decades ago mainly using tissue extract. Light production of the worm, however, originates from a secreted mucus only. Here, we report the optical and physicochemical properties of the luminous mucus. We show that the produced light occurs as a long glow in the blue range (455 nm), which is an unusual color for a shallow benthic invertebrate. We also show that the light originates from a photoprotein whose light production is independent of molecular oxygen yet somewhat related to the physicochemical (rheological) characteristics of the mucus itself. Indeed, the mucus seems to polymerize and become more viscous on exposure to H2O2, which in turn seems to inhibit the light production. Ferrous iron was not associated with any strong stimulatory effect. This is in contrast to past studies on worm tissues showing that the light production is strongly stimulated by H2O2 and ferrous iron. Overall, our results highlight the fact that working on the luminous mucus only (vs. worm tissues) provides the ability to study its chemical properties possibly involved in the fine control of light production—as well as its rheological properties—and identify the possible interactions between these two properties.

Page Thumbnails

  • Thumbnail: Page 
1
    1
  • Thumbnail: Page 
2
    2
  • Thumbnail: Page 
3
    3
  • Thumbnail: Page 
4
    4
  • Thumbnail: Page 
5
    5
  • Thumbnail: Page 
6
    6
  • Thumbnail: Page 
7
    7
  • Thumbnail: Page 
8
    8
  • Thumbnail: Page 
9
    9
  • Thumbnail: Page 
10
    10
  • Thumbnail: Page 
11
    11
  • Thumbnail: Page 
12
    12
  • Thumbnail: Page 
13
    13
  • Thumbnail: Page 
14
    14