If you need an accessible version of this item please contact JSTOR User Support

Mutualistic Mimicry and Filtering by Altitude Shape the Structure of Andean Butterfly Communities

Nicolas Chazot, Keith R. Willmott, Paola G. Santacruz Endara, Alexandre Toporov, Ryan I. Hill, Chris D. Jiggins and Marianne Elias
The American Naturalist
Vol. 183, No. 1 (January 2014), pp. 26-39
DOI: 10.1086/674100
Stable URL: http://www.jstor.org/stable/10.1086/674100
Page Count: 14
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
Mutualistic Mimicry and Filtering by Altitude Shape the Structure of Andean Butterfly Communities
Preview not available

Abstract

AbstractBoth the abiotic environment and abiotic interactions among species contribute to shaping species assemblages. While the roles of habitat filtering and competitive interactions are clearly established, less is known about how positive interactions, whereby species benefit from the presence of one another, affect community structure. Here we assess the importance of positive interactions by studying Andean communities of butterflies that interact mutualistically via Müllerian mimicry. We show that communities at similar altitudes have a similar phylogenetic composition, confirming that filtering by altitude is an important process. We also provide evidence that species that interact mutualistically (i.e., species that share the same mimicry wing pattern) coexist at large scales more often than expected by chance. Furthermore, we detect an association between mimicry structure and altitude that is stronger than expected even when phylogeny is corrected for, indicating adaptive convergence for wing pattern and/or altitudinal range driven by mutualistic interactions. Positive interactions extend far beyond Müllerian mimicry, with many examples in plants and animals, and their role in the evolution and assembly of communities may be more pervasive than is currently appreciated. Our findings have strong implications for the evolution and resilience of community structure in a changing world.

Page Thumbnails

  • Thumbnail: Page 
1
    1
  • Thumbnail: Page 
2
    2
  • Thumbnail: Page 
3
    3
  • Thumbnail: Page 
4
    4
  • Thumbnail: Page 
5
    5
  • Thumbnail: Page 
6
    6
  • Thumbnail: Page 
7
    7
  • Thumbnail: Page 
8
    8
  • Thumbnail: Page 
9
    9
  • Thumbnail: Page 
10
    10
  • Thumbnail: Page 
11
    11
  • Thumbnail: Page 
12
    12
  • Thumbnail: Page 
13
    13
  • Thumbnail: Page 
14
    14