Access

You are not currently logged in.

Access JSTOR through your library or other institution:

login

Log in through your institution.

Journal Article

Trade-Offs and Coexistence: A Lottery Model Applied to Fig Wasp Communities

A. Bradley Duthie, Karen C. Abbott and John D. Nason
The American Naturalist
Vol. 183, No. 6 (June 2014), pp. 826-841
DOI: 10.1086/675897
Stable URL: http://www.jstor.org/stable/10.1086/675897
Page Count: 16
Were these topics helpful?
See something inaccurate? Let us know!

Select the topics that are inaccurate.

Cancel
  • More info
  • Add to My Lists
  • Cite this Item
Trade-Offs and Coexistence: A Lottery Model Applied to Fig Wasp Communities
Preview not available

Abstract

AbstractEcological communities in which organisms complete their life cycles on discrete ephemeral patches are common and often support an unusually large number of species. Explaining this diversity is challenging for communities of ecologically similar species undergoing preemptive competition, where classic coexistence mechanisms may not readily apply. We use nonpollinating fig wasps as a model community characterized by high diversity and preemptive competition to show how subadditive population growth and a trade-off between competitor fecundity and dispersal ability can lead to coexistence. Because nonpollinator species are often closely related, have similar life histories, and compete for the same discrete resources, understanding their coexistence is challenging given competitive exclusion is expected. Empirical observations suggest that nonpollinating fig wasp species may face a trade-off between egg loads and dispersal abilities. We model a lottery in which a species’ competitive ability is determined by a trade-off between fecundity and dispersal ability. Variation in interpatch distance between figs generates temporal variability in the relative benefit of fecundity versus dispersal. We show that the temporal storage effect leads to coexistence for a range of biologically realistic parameter values. We further use individual-based modeling to show that when species’ traits evolve, coexistence is less likely but trait divergence can result. We discuss the implications of this coexistence mechanism for ephemeral patch systems wherein competition is strongly preemptive.

Page Thumbnails

  • Thumbnail: Page 
1
    1
  • Thumbnail: Page 
2
    2
  • Thumbnail: Page 
3
    3
  • Thumbnail: Page 
4
    4
  • Thumbnail: Page 
5
    5
  • Thumbnail: Page 
6
    6
  • Thumbnail: Page 
7
    7
  • Thumbnail: Page 
8
    8
  • Thumbnail: Page 
9
    9
  • Thumbnail: Page 
10
    10
  • Thumbnail: Page 
11
    11
  • Thumbnail: Page 
12
    12
  • Thumbnail: Page 
13
    13
  • Thumbnail: Page 
14
    14
  • Thumbnail: Page 
15
    15
  • Thumbnail: Page 
16
    16
Part of Sustainability