Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Nonrandom Patterns of Genetic Admixture Expose the Complex Historical Hybrid Origin of Unisexual Leaf Beetle Species in the Genus Calligrapha

Tinguaro Montelongo and Jesús Gómez-Zurita
The American Naturalist
Vol. 185, No. 1 (January 2015), pp. 113-134
DOI: 10.1086/678408
Stable URL: http://www.jstor.org/stable/10.1086/678408
Page Count: 22
  • More info
  • Cite this Item
Nonrandom Patterns of Genetic Admixture Expose the Complex Historical Hybrid Origin of Unisexual Leaf Beetle Species in the Genus Calligrapha
Preview not available

Abstract

AbstractMany unisexual animal lineages supposedly arose from hybridization. However, support for their putative hybrid origins mostly comes from indirect methodologies, which are rarely confirmatory. Here we provide compelling data indicating that tetraploid unisexual Calligrapha are true genetic mosaics obtained via analysis of mitochondrial DNA (mtDNA) and allelic variation and coalescence times for three single-copy nuclear genes (CPS, HARS, and Wg) in five of six unisexual Calligrapha and a representative sample of bisexual species. Nuclear allelic diversity in unisexuals consistently segregates in the gene pools of at least two but up to three divergent bisexual species, interpreted as putative parentals of interspecific hybridization crosses. Interestingly, their mtDNA diversity derives from an additional yet undiscovered older evolutionary lineage that is possibly the same for all independently originated unisexual species. One possibly extinct species transferred its mtDNA to several evolutionary lineages in a wave of hybridization events during the Pliocene, whereby descendant species retained a polymorphic mtDNA constitution. Recent hybridizations, in the Pleistocene and always involving females with the old introgressed mtDNA, seemingly occurred in the lineages leading to unisexual species, decoupling mtDNA introgression (and inferences derived from these data, such as timing and parentage) from subsequent acquisition of the new reproductive mode. These results illuminate an unexpected complexity in possible routes to animal unisexuality, with implications for the interpretation of ancient unisexuality. If the origin of unisexuality requires a mechanism where (1) hybridization is a necessary but insufficient condition and (2) multiple bouts of hybridization involving more than two divergent lineages are required, then the origins of several classical unisexual systems may have to be reassessed.

Page Thumbnails

  • Thumbnail: Page 
1
    1
  • Thumbnail: Page 
2
    2
  • Thumbnail: Page 
3
    3
  • Thumbnail: Page 
4
    4
  • Thumbnail: Page 
5
    5
  • Thumbnail: Page 
6
    6
  • Thumbnail: Page 
7
    7
  • Thumbnail: Page 
8
    8
  • Thumbnail: Page 
9
    9
  • Thumbnail: Page 
10
    10
  • Thumbnail: Page 
11
    11
  • Thumbnail: Page 
12
    12
  • Thumbnail: Page 
13
    13
  • Thumbnail: Page 
14
    14
  • Thumbnail: Page 
15
    15
  • Thumbnail: Page 
16
    16
  • Thumbnail: Page 
17
    17
  • Thumbnail: Page 
18
    18
  • Thumbnail: Page 
19
    19
  • Thumbnail: Page 
20
    20
  • Thumbnail: Page 
21
    21
  • Thumbnail: Page 
22
    22