Your PDF has successfully downloaded.

You may be interested in finding more content on these topics:


You are not currently logged in.

Access JSTOR through your library or other institution:


Log in through your institution.

A Strong Test of the Maximum Entropy Theory of Ecology

Xiao Xiao, Daniel J. McGlinn and Ethan P. White
The American Naturalist
Vol. 185, No. 3 (March 2015), pp. E70-E80
DOI: 10.1086/679576
Stable URL:
Page Count: 11
  • Download PDF
  • Add to My Lists
  • Cite this Item
We're having trouble loading this content. Download PDF instead.


AbstractThe maximum entropy theory of ecology (METE) is a unified theory of biodiversity that predicts a large number of macroecological patterns using information on only species richness, total abundance, and total metabolic rate of the community. We evaluated four major predictions of METE simultaneously at an unprecedented scale using data from 60 globally distributed forest communities including more than 300,000 individuals and nearly 2,000 species. METE successfully captured 96% and 89% of the variation in the rank distribution of species abundance and individual size but performed poorly when characterizing the size-density relationship and intraspecific distribution of individual size. Specifically, METE predicted a negative correlation between size and species abundance, which is weak in natural communities. By evaluating multiple predictions with large quantities of data, our study not only identifies a mismatch between abundance and body size in METE but also demonstrates the importance of conducting strong tests of ecological theories.

Notes and References

This item contains 69 references.

Literature Cited
  • ['Adler, P. B. 2004. Neutral models fail to reproduce observed species-area and species-time relationships in Kansas grasslands. Ecology 85:1265–1272.']
  • ['Baribault, T. W., R. K. Kobe, and A. O. Finley. 2011a. Tropical tree growth is correlated with soil phosphorus, potassium, and calcium, though not for legumes. Ecological Monographs 82:189–203.']
  • ['———. 2011b. Data from: Tropical tree growth is correlated with soil phosphorus, potassium, and calcium, though not for legumes. Ecological Monographs 82:189–203, Dryad Digital Repository,']
  • ['Blackburn, T. M., and K. J. Gaston. 1997. A critical assessment of the form of the interspecific relationship between abundance and body size in animals. Journal of Animal Ecology 66:233–249.']
  • ['Brown, J. H. 1995. Macroecology. University Of Chicago Press, Chicago.']
  • ['Brown, J. H., and B. A. Maurer. 1987. Evolution of species assemblages: effects of energetic constraints and species dynamics on the diversification of the North American avifauna. American Naturalist 130:1–17.']
  • ['Cohen, J. E. 1968. Alternate derivations of a species-abundance relation. American Naturalist 102:165–172.']
  • ['Condit, R. 1998a. Ecological implications of changes in drought patterns: shifts in forest composition in Panama. Climatic Change 39:413–427.']
  • ['———. 1998b. Tropical forest census plots. Springer, Berlin, and R. G. Landes, Georgetown, TX.']
  • ['Condit, R., S. Aguilar, A. Hernández, R. Pérez, S. Lao, G. Angehr, S. P. Hubbell, et al. 2004. Tropical forest dynamics across a rainfall gradient and the impact of an El Niño dry season. Journal of Tropical Ecology 20:51–72.']
  • ['Condit, R., R. Sukumar, S. P. Hubbell, and R. B. Foster. 1998. Predicting population trends from size distributions: a direct test in a tropical tree community. American Naturalist 152:495–509.']
  • ['Connolly, S. R., M. Dornelas, D. R. Bellwood, and T. P. Hughes. 2009. Testing species abundance models: a new bootstrap approach applied to Indo-Pacific coral reefs. Ecology 90:3138–3149.']
  • ['Cotgreave, P. 1993. The relationship between body size and population abundance in animals. Trends in Ecology and Evolution 8:244–248.']
  • ['Damuth, J. 1981. Population density and body size in mammals. Nature 290:699–700.']
  • ['DeWalt, S. J., G. Bourdy, L. R. Chávez de Michel, and C. Quenevo. 1999. Ethnobotany of the Tacana: quantitative inventories of two permanent plots of northwestern Bolivia. Economic Botany 53:237–260.']
  • ['Dewar, R. C., and A. Porté. 2008. Statistical mechanics unifies different ecological patterns. Journal of Theoretical Biology 251:389–403.']
  • ['Enquist, B. J., and K. J. Niklas. 2001. Invariant scaling relations across tree-dominated communities. Nature 410:655–660.']
  • ['Ernest, S. K. M., E. P. White, and J. H. Brown. 2009. Changes in a tropical forest support metabolic zero-sum dynamics. Ecology Letters 12:507–515.']
  • ['Gilbert, G. S., E. Howard, B. Ayala-Orozco, M. Bonilla-Moheno, J. Cummings, S. Langridge, I. M. Parker, et al. 2010. Beyond the tropics: forest structure in a temperate forest mapped plot. Journal of Vegetation Science 21:388–405.']
  • ['Gillooly, J. F., J. H. Brown, G. B. West, V. M. Savage, and E. L. Charnov. 2001. Effects of size and temperature on metabolic rate. Science 293:2248–2251.']
  • ['Gouws, E. J., K. J. Gaston, and S. L. Chown. 2011. Intraspecific body size frequency distributions of insects. PLoS ONE 6:e16606.']
  • ['Hanski, I., and M. Gyllenberg. 1997. Uniting two general patterns in the distribution of species. Science 275:397–400.']
  • ['Harte, J. 2011. Maximum entropy and ecology: a theory of abundance, distribution, and energetics. Oxford University Press, Oxford.']
  • ['Harte, J., and E. A. Newman. 2014. Maximum information entropy: a foundation for ecological theory. Trends in Ecology and Evolution 29:384–389.']
  • ['Harte, J., A. B. Smith, and D. Storch. 2009. Biodiversity scales from plots to biomes with a universal species-area curve. Ecology Letters 12:789–797.']
  • ['Harte, J., T. Zillio, E. Conlisk, and A. B. Smith. 2008. Maximum entropy and the state-variable approach to macroecology. Ecology 89:2700–2711.']
  • ['Hubbell, S. P. 2001. The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton, NJ.']
  • ['Hubbell, S. P., R. Condit, and R. B. Foster. 2005. Barro Colorado Forest Census plot data. Accessed April 9, 2012.']
  • ['Hubbell, S. P., R. B. Foster, S. T. O’Brien, K. E. Harms, R. Condit, B. Wechsler, S. J. Wright, et al. 1999. Light-gap disturbances, recruitment limitation, and tree diversity in a Neotropical forest. Science 283:554–557.']
  • ['Jaynes, E. T. 2003. Probability theory: the logic of science. G. L. Bretthorst, ed. Cambridge University Press, Cambridge.']
  • ['Jones, F. A., and H. C. Muller-Landau. 2008. Measuring long-distance seed dispersal in complex natural environments: an evaluation and integration of classical and genetic methods. Journal of Ecology 96:642–652.']
  • ['Kohyama, T., E. Suzuki, T. Partomihardjo, and T. Yamada. 2001. Dynamic steady state of patch-mosaic tree size structure of a mixed dipterocarp forest regulated by local crowding. Ecological Research 16:85–98.']
  • ['Kohyama, T., E. Suzuki, T. Partomihardjo, T. Yamada, and T. Kubo. 2003. Tree species differentiation in growth, recruitment and allometry in relation to maximum height in a Bornean mixed dipterocarp forest. Journal of Ecology 91:797–806.']
  • ['Koons, D. N., R. D. Birkhead, S. M. Boback, M. I. Williams, and M. P. Greene. 2009. The effect of body size on cottonmouth (Agkistrodon piscivorus) survival, recapture probability, and behavior in an Alabama swamp. Herpetological Conservation and Biology 4:221–235.']
  • ['Locey, K. J., and E. P. White. 2013. How species richness and total abundance constrain the distribution of abundance. Ecology Letters 16:1177–1185.']
  • ['Lopez-Gonzalez, G., S. L. Lewis, M. Burkitt, T. R. Baker, and O. L. Phillips. 2009. database. Date of extraction: July 6, 2012.']
  • ['Lopez-Gonzalez, G., S. L. Lewis, M. Burkitt, and O. L. Phillips. 2011. a web application and research tool to manage and analyse tropical forest plot data. Journal of Vegetation Science 22:610–613.']
  • ['Marquet, P. A., J. A. Keymer, and H. Cofre. 2003. Breaking the stick in space: of niche models, metacommunities and patterns in the relative abundance of species. Pages 64–86 in T. M. Blackburn and K. J. Gaston, eds. Macroecology: concepts and consequences. Blackwell Science, Oxford.']
  • ['McDonald, R. I., R. K. Peet, and D. L. Urban. 2002. Environmental correlates of aak decline and red maple increase in the North Carolina piedmont. Castanea 67:84–95.']
  • ['McGill, B. 2003. Strong and weak tests of macroecological theory. Oikos 102:679–685.']
  • ['———. 2010. Towards a unification of unified theories of biodiversity. Ecology Letters 13:627–642.']
  • ['McGill, B. J., R. S. Etienne, J. S. Gray, D. Alonso, M. J. Anderson, H. K. Benecha, M. Dornelas, et al. 2007. Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecology Letters 10:995–1015.']
  • ['McGill, B. J., B. A. Maurer, and M. D. Weiser. 2006. Empirical evaluation of neutral theory. Ecology 87:1411–1423.']
  • ['McGlinn, D. J., X. Xiao, and E. P. White. 2013. An empirical evaluation of four variants of a universal species-area relationship. PeerJ 1:e212.']
  • ['Morlon, H., E. P. White, R. S. Etienne, J. L. Green, A. Ostling, D. Alonso, B. J. Enquist, et al. 2009. Taking species abundance distributions beyond individuals. Ecology Letters 12:488–501.']
  • ['Muller-Landau, H. C., R. S. Condit, K. E. Harms, C. O. Marks, S. C. Thomas, S. Bunyavejchewin, G. Chuyong, et al. 2006. Comparing tropical forest tree size distributions with the predictions of metabolic ecology and equilibrium models. Ecology Letters 9:589–602.']
  • ['Nakashizuka, T., M. Saito, K. Matsui, A. Makita, T. Kambayashi, T. Masaki, T. Nagaike, et al. 2003. Monitoring beech (Fagus crenata) forests of different structure in Shirakami Mountains. Tohoku Journal of Forest Science 8:67–74.']
  • ['Newman, E. A., M. E. Harte, N. Lowell, M. Wilber, and J. Harte. 2014. Empirical tests of within- and across-species energetics in a diverse plant community. Ecology 95:2815–2825.']
  • ['Nishimura, T. B., and E. Suzuki. 2001. Allometric differentiation among tropical tree seedlings in heath and peat-swamp forests. Journal of Tropical Ecology 17:667–681.']
  • ['Nishimura, T. B., E. Suzuki, T. Kohyama, and S. Tsuyuzaki. 2006. Mortality and growth of trees in peat-swamp and heath forests in central Kalimantan after severe drought. Plant Ecology 188:165–177.']
  • ['O’Dwyer, J. P., J. K. Lake, A. Ostling, V. M. Savage, and J. L. Green. 2009. An integrative framework for stochastic, size-structured community assembly. Proceedings of the National Academy of Sciences of the USA 106:6170–6175.']
  • ['Palmer, M. W., R. K. Peet, R. A. Reed, W. Xi, and P. S. White. 2007. A multiscale study of vascular plants in a North Carolia Piedmont forest. Ecology 88:2674.']
  • ['Peet, R. K., and N. L. Christensen. 1987. Competition and tree death. BioScience 37:586–595.']
  • ['Pielou, E. C. 1975. Ecological diversity. Wiley, New York.']
  • ['Pitman, N. C. A., C. E. Cerón, C. I. Reyes, M. Thurber, and J. Arellano. 2005. Catastrophic natural origin of a species-poor tree community in the world’s richest forest. Journal of Tropical Ecology 21:559–568.']
  • ['Pyke, C. R., R. Condit, S. Aguilar, and S. Lao. 2001. Floristic composition across a climatic gradient in a Neotropical lowland forest. Journal of Vegetation Science 12:553–566.']
  • ['Ramesh, B. R., M. H. Swaminath, S. V. Patil, R. Pélissier, P. D. Venugopal, S. Aravajy, C. Elouard, et al. 2010. Forest stand structure and composition in 96 sites along environmental gradients in the central Western Ghats of India. Ecology 91:3118.']
  • ['Reed, R. A., R. K. Peet, M. W. Palmer, and P. S. White. 1993. Scale dependence of vegetation-environment correlations: a case study of a North Carolina piedmont woodland. Journal of Vegetation Science 4:329–340.']
  • ['Rosenzweig, M. L. 1995. Species diversity in space and time. Cambridge University Press, Cambridge.']
  • ['Supp, S. R., X. Xiao, S. K. M. Ernest, and E. P. White. 2012. An experimental test of the response of macroecological patterns to altered species interactions. Ecology 93:2505–2511.']
  • ['Thibault, K. M., E. P. White, A. H. Hurlbert, and S. K. M. Ernest. 2011. Multimodality in the individual size distributions of bird communities. Global Ecology and Biogeography 20:145–153.']
  • ['Thompson, J., N. Brokaw, J. K. Zimmerman, R. B. Waide, E. M. Everham, D. J. Lodge, C. M. Taylor, et al. 2002. Land use history, environment, and tree composition in a tropical forest. Ecological Applications 12:1344–1363.']
  • ['West, G. B., J. H. Brown, and B. J. Enquist. 1999. A general model for the structure and allometry of plant vascular systems. Nature 400:664–667.']
  • ['White, E. P., S. K. M. Ernest, A. J. Kerkhoff, and B. J. Enquist. 2007. Relationships between body size and abundance in ecology. Trends in Ecology and Evolution 22:323–330.']
  • ['White, E. P., K. M. Thibault, and X. Xiao. 2012a. Characterizing species abundance distributions across taxa and ecosystems using a simple maximum entropy model. Ecology 93:1772–1778.']
  • ['White, E. P., X. Xiao, N. J. B. Issac, and R. M. Sibly. 2012b. Methodological tools. Pages 9–20 in R. M. Sibly, J. H. Brown, and A. Kodric-Brown, eds. Metabolic ecology: a scaling approach. Wiley, Chichester.']
  • ['Xi, W., R. K. Peet, J. K. Decoster, and D. L. Urban. 2008. Tree damage risk factors associated with large, infrequent wind disturbances of Carolina forests. Forestry 81:317–334.']
  • ['Xiao, X., S. Aravajy, T. W. Baribault, N. Brokaw, N. L. Christensen, Dasappa, S. J. DeWalt, et al. 2014. Data from: A strong test of the maximum entropy theory of ecology. American Naturalist, Dryad Digital Repository,']
  • ['Zimmerman, J. K., E. M. Everham III, R. B. Waide, D. J. Lodge, C. M. Taylor, and N. V. L. Brokaw. 1994. Responses of tree species to hurricane winds in subtropical wet forest in Puerto Rico: implications for tropical tree life histories. Journal of Ecology 82:911–922.']