Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Carbon Storage on Landscapes with Stand-replacing Fires

DANIEL M. KASHIAN, WILLIAM H. ROMME, DANIEL B. TINKER, MONICA G. TURNER and MICHAEL G. RYAN
BioScience
Vol. 56, No. 7 (July 2006), pp. 598-606
DOI: 10.1641/0006-3568(2006)56[598:csolws]2.0.co;2
Stable URL: http://www.jstor.org/stable/10.1641/0006-3568(2006)56[598:csolws]2.0.co;2
Page Count: 9
  • Download ($42.00)
  • Subscribe ($19.50)
  • Cite this Item
Item Type
Article
References
Carbon Storage on Landscapes with Stand-replacing Fires
Preview not available

Abstract

AbstractMany conifer forests experience stand-replacing wildfires, and these fires and subsequent recovery can change the amount of carbon released to the atmosphere because conifer forests contain large carbon stores. Stand-replacing fires switch ecosystems to being a net source of carbon as decomposition exceeds photosynthesis—a short-term effect (years to decades) that may be important over the next century if fire frequency increases. Over the long term (many centuries), net carbon storage through a fire cycle is zero if stands replace themselves. Therefore, equilibrium response of landscape carbon storage to changes in fire frequency will depend on how stand age distribution changes, on the carbon storage of different stand ages, and on postfire regeneration. In a case study of Yellowstone National Park, equilibrium values of landscape carbon storage were resistant to large changes in fire frequency because these forests regenerate quickly, the current fire interval is very long, the most rapid changes in carbon storage occur in the first century, and carbon storage is similar for stands of different ages. The conversion of forest to meadow or to sparser forest can have a large impact on landscape carbon storage, and this process is likely to be important for many conifer forests.

Page Thumbnails