You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:


Log in to your personal account or through your institution.

Increased pulmonary artery diameter on chest computed tomography can predict borderline pulmonary hypertension

Tobias J. Lange, Christian Dornia, Jaroslava Stiefel, Christian Stroszczynski, Michael Arzt, Michael Pfeifer and Okka W. Hamer
Pulmonary Circulation
Vol. 3, No. 2 (April 2013), pp. 363-368
DOI: 10.4103/2045-8932.113175
Stable URL:
Page Count: 6
Subjects: Health Sciences
Find more content in these subjects: Health Sciences
  • Download PDF
  • Add to My Lists
  • Cite this Item
Increased pulmonary artery diameter on chest computed tomography can predict borderline pulmonary hypertension
We're having trouble loading this content. Download PDF instead.


AbstractPulmonary hypertension (PH) often leads to dilatation of the pulmonary artery (PA), which can be measured on chest computed tomography (CT). While the predictive capability of PA dilatation is useful to distinguish PH (mean PA pressure ≥25 mmHg) from normal (mean PA pressure ≤ 20 mmHg), CT characteristics of borderline PH (mean PA pressure 21–24 mmHg) have not been described. We aimed to investigate whether patients with borderline PH already show PA dilatation and to assess the diagnostic accuracy of PA dilatation for borderline PH diagnosis. Between April 2003 and September 2008, consecutive symptomatic patients with a mean PA pressure below 25 mmHg on right heart catheterization who had a chest CT available were retrospectively included. PA diameters from chest CT were correlated with hemodynamic measurements and analyzed with respect to their accuracy of predicting borderline PH. Main PA diameters were significantly larger in 26 patients with borderline PH compared with 52 patients without PH (3.16 ± 0.53 vs. 2.78 ± 0.43 cm, P = 0.001). The main PA diameter on CT correlated with mean PA pressure (r = 0.496, P < 0.001) and pulmonary vascular resistance (r = 0.445, P < 0.001), and predicted borderline PH with sensitivity, specificity, negative and positive predictive values of 77%, 62%, 84%, and 50%, respectively, using a cutoff ≥2.9 cm. This first systematic investigation of CT parameters in symptomatic patients with mean PA pressures less than 25 mmHg could show that, even in patients with borderline PH, significant PA dilatation can be present, which was related to PA pressure and pulmonary vascular resistance. This can be useful for identification of patients with borderline PH for further study and to prompt further diagnostic work-up of possible underlying diseases.

Notes and References

This item contains 17 references.

  • 1.
    ['Badesch DB, Champion HC, Gomez Sanchez MA, Hoeper MM, Loyd JE, Manes A, et al. Diagnosis and assessment of pulmonary arterial hypertension. J Am Coll Cardiol 2009;54:55–66.']
  • 2.
    ['Oswald-Mammosser M, Weitzenblum E, Quoix E, Moser G, Chaouat A, Charpentier C, et al. Prognostic factors in COPD patients receiving long-term oxygen therapy. Importance of pulmonary artery pressure. Chest 1995;107:1193–8.']
  • 3.
    ['Lettieri CJ, Nathan SD, Barnett SD, Ahmad S, Shorr AF. Prevalence and outcomes of pulmonary arterial hypertension in advanced idiopathic pulmonary fibrosis. Chest 2006;129:746–52.']
  • 4.
    ['Ghio S, Gavazzi A, Campana C, Inserra C, Klersy C, Sebastiani R, et al. Independent and additive prognostic value of right ventricular systolic function and pulmonary artery pressure in patients with chronic heart failure. J Am Coll Cardiol 2001;37:183–8.']
  • 5.
    ['McLaughlin VV, Presberg KW, Doyle RL, Abman SH, McCrory DC, Fortin T, et al. Prognosis of pulmonary arterial hypertension: ACCP evidence-based clinical practice guidelines. Chest 2004;126:78–92.']
  • 6.
    ['Kovacs G, Berghold A, Scheidl S, Olschewski H. Pulmonary arterial pressure during rest and exercise in healthy subjects: A systematic review. Eur Respir J 2009;34:888–94.']
  • 7.
    ['Liu M, Ma Z, Guo X, Zhang H, Yang Y, Wang C. Computed tomographic pulmonary angiography in the assessment of severity of chronic thromboembolic pulmonary hypertension and right ventricular dysfunction. Eur J Radiol 2011;80:462–9.']
  • 8.
    ['Liu M, Ma Z, Guo X, Chen X, Yang Y, Wang C. Cardiovascular parameters of computed tomographic pulmonary angiography to assess pulmonary vascular resistance in patients with chronic thromboembolic pulmonary hypertension. Int J Cardiol 2013;164:295–300.']
  • 9.
    ['Kuriyama K, Gamsu G, Stern RG, Cann CE, Herfkens RJ, Brundage BH. CT-determined pulmonary artery diameters in predicting pulmonary hypertension. Invest Radiol 1984;19:16–22.']
  • 10.
    ['Haimovici JB, Trotman-Dickenson B, Halpern EF, Dec GW, Ginns LC, Shepard JA, et al. Relationship between pulmonary artery diameter at computed tomography and pulmonary artery pressures at right-sided heart catheterization. Massachusetts General Hospital Lung Transplantation Program. Acad Radiol 1997;4:327–34.']
  • 11.
    ['Tan RT, Kuzo R, Goodman LR, Siegel R, Haasler GB, Presberg KW. Utility of CT scan evaluation for predicting pulmonary hypertension in patients with parenchymal lung disease. Medical College of Wisconsin Lung Transplant Group. Chest 1998;113:1250–6.']
  • 12.
    ['Edwards PD, Bull RK, Coulden R. CT measurement of main pulmonary artery diameter. Br J Radiol 1998;71:1018–20.']
  • 13.
    ['Dornia C, Lange TJ, Behrens G, Stiefel J, Müller-Wille R, Poschenrieder F, et al. Multidetector computed tomography for detection and characterization of pulmonary hypertension in consideration of WHO classification. J Comput Assist Tomogr 2012;36:175–80.']
  • 14.
    ['Simonneau G, Robbins IM, Beghetti M, Channick RN, Delcroix M, Denton CP, et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 2009;54:43–54.']
  • 15.
    ['Truong QA, Massaro JM, Rogers IS, Mahabadi AA, Kriegel MF, Fox CS, et al. Reference values for normal pulmonary artery dimensions by noncontrast cardiac computed tomography: The Framingham Heart Study. Circ Cardiovasc Imaging 2012;5:147–54.']
  • 16.
    ['Devaraj A, Wells AU, Meister MG, Corte TJ, Hansell DM. The effect of diffuse pulmonary fibrosis on the reliability of CT signs of pulmonary hypertension. Radiology 2008;249:1042–9.']
  • 17.
    ['Galiè N, Rubin L, Hoeper M, Jansa P, Al-Hiti H, Meyer G, et al. Treatment of patients with mildly symptomatic pulmonary arterial hypertension with bosentan (EARLY study): A double-blind, randomised controlled trial. Lancet 2008;371:2093–100.']