Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

How Fast Will We Lose?

Ron Hirshon
Mathematics Magazine
Vol. 83, No. 3 (June 2010), pp. 213-218
DOI: 10.4169/002557010x494869
Stable URL: http://www.jstor.org/stable/10.4169/002557010x494869
Page Count: 6
  • Download ($16.00)
  • Subscribe ($19.50)
  • Cite this Item
Item Type
Article
References
How Fast Will We Lose?
Preview not available

Abstract

SummaryIn a version of gambler's ruin, players start with x and y dollars respectively, and flip coins for one dollar per flip until one player runs out of money. This is a random walk with two absorbing barriers. We consider the number of ways for the first player to lose on the nth flip, for n=x,n+2. We use probabilistic arguments to construct generating functions for these quantities along with explicit methods for computing them. This paper builds on the paper by Hirshon and De Simone, Mathematics Magazine 81 (2008) 146–152.

Page Thumbnails