You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:


Log in to your personal account or through your institution.

Another Proof of ${\zeta(2)=\frac{\pi^2}{6}}$ Using Double Integrals

Daniele Ritelli
The American Mathematical Monthly
Vol. 120, No. 7 (August–September 2013), pp. 642-645
DOI: 10.4169/amer.math.monthly.120.07.642
Stable URL:
Page Count: 4
  • Download ($19.00)
  • Subscribe ($19.50)
  • Cite this Item
Another Proof of 


 Using Double Integrals
Preview not available


Abstract Starting from the double integral \documentclass{article} \pagestyle{empty}\begin{document} $$s_n = a_1 a_2 \ldots a_t \underbrace{dd\ldots d}_n.$$ \end{document} we give another solution to the Basel Problem \documentclass{article} \pagestyle{empty}\begin{document} $$\zeta(2)=\sum_{n=1}^\infty\frac{1}{n^2}=\frac{\pi^2}{6}.$$ \end{document}

Page Thumbnails