Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

A Simple Proof of Ljunggren’s Binomial Congruence

Chua Cheong Siong
The American Mathematical Monthly
Vol. 121, No. 2 (February), pp. 162-164
DOI: 10.4169/amer.math.monthly.121.02.162
Stable URL: http://www.jstor.org/stable/10.4169/amer.math.monthly.121.02.162
Page Count: 3
  • Download ($19.00)
  • Cite this Item
Item Type
Article
References
If you need an accessible version of this item please contact JSTOR User Support
A Simple Proof of Ljunggren’s Binomial Congruence
Preview not available

Abstract

Abstract Let p > 3 be a prime, and let a and b be positive integers with a ≥ b. In this article, we give a simple proof of the congruence. \documentclass{article} \pagestyle{empty}\begin{document} $$\left(\begin{matrix} {pa}\\ {pb}\end{matrix}\right)\equiv \left(\begin{matrix}a\\ b\end{matrix}\right)\pmod{p^3}.$$ \end{document}

Page Thumbnails