Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Regulation of Glycoprotein Biosynthesis by Formation of Specific Glycosyltransferase Complexes

Raymond J. Ivatt
Proceedings of the National Academy of Sciences of the United States of America
Vol. 78, No. 7, [Part 2: Biological Sciences] (Jul., 1981), pp. 4021-4025
Stable URL: http://www.jstor.org/stable/10540
Page Count: 5
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Regulation of Glycoprotein Biosynthesis by Formation of Specific Glycosyltransferase Complexes
Preview not available

Abstract

Eukaryotic cell surfaces simultaneously express a complex array of protein-linked oligosaccharides and, during differentiation and on neoplastic transformation, these arrays change. The oligosaccharides linked to asparagine residues of proteins are a complex family of structures that are derived from a common precursor oligosaccharide by a network of competing biosynthetic pathways. The glycosylation reactions that make up these biosynthetic pathways often share common intermediates, requiring the competition between rival glycosyltransferases to be regulated at the supramolecular level. Investigation of two sequential glycosyltransferases that together add N-acetyllactosamine to glycoproteins has revealed their ability to form specific complexes. The functional consequences of complex formation were assessed by investigating the coupled reaction carried out by these sequential enzymes. The membrane enzymes are readily adsorbed by preformed liposomes, and their ability to interact after liposome adsorption has allowed direct investigation of the role played by complex formation. Comparison of the coupled reaction carried out by these sequential enzymes when they are coadsorbed to the same liposome or adsorbed to separate liposomes shows the preferential use of endogenously generated intermediate over exogenously added glycoproteins. This facilitated passage of the intermediate glycosylated glycoprotein within the complex results in a tight coupling of the sequential enzymes. The formation of such complexes by sequential glycosyltransferases is proposed as a mechanism for controlling the competition between potentially rival glycosylation sequences during glycoprotein synthesis. The formation of different specific complexes under different conditions provides a flexible mechanism for regulating the synthesis of cell surface glycoproteins during development.

Page Thumbnails

  • Thumbnail: Page 
4021
    4021
  • Thumbnail: Page 
4022
    4022
  • Thumbnail: Page 
4023
    4023
  • Thumbnail: Page 
4024
    4024
  • Thumbnail: Page 
4025
    4025