Access

You are not currently logged in.

Access JSTOR through your library or other institution:

login

Log in through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Using SAS PROC MIXED to Fit Multilevel Models, Hierarchical Models, and Individual Growth Models

Judith D. Singer
Journal of Educational and Behavioral Statistics
Vol. 23, No. 4 (Winter, 1998), pp. 323-355
Stable URL: http://www.jstor.org/stable/1165280
Page Count: 33
  • Read Online (Free)
  • Download ($29.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Using SAS PROC MIXED to Fit Multilevel Models, Hierarchical Models, and Individual Growth Models
Preview not available

Abstract

SAS PROC MIXED is a flexible program suitable for fitting multilevel models, hierarchical linear models, and individual growth models. Its position as an integrated program within the SAS statistical package makes it an ideal choice for empirical researchers and applied statisticians seeking to do data reduction, management, and analysis within a single statistical package. Because the program was developed from the perspective of a "mixed" statistical model with both random and fixed effects, its syntax and programming logic may appear unfamiliar to users in education and the social and behavioral sciences who tend to express these models as multilevel or hierarchical models. The purpose of this paper is to help users familiar with fitting multilevel models using other statistical packages (e. g., HLM, MLwiN, MIXREG) add SAS PROC MIXED to their array of analytic options. The paper is written as a step-by-step tutorial that shows how to fit the two most common multilevel models: (a) school effects models, designed for data on individuals nested within naturally occurring hierarchies (e. g., students within classes); and (b) individual growth models, designed for exploring longitudinal data (on individuals) over time. The conclusion discusses how these ideas can be extended straighforwardly to the case of three level models. An appendix presents general strategies for working with multilevel data in SAS and for creating data sets at several levels.

Page Thumbnails

  • Thumbnail: Page 
323
    323
  • Thumbnail: Page 
324
    324
  • Thumbnail: Page 
325
    325
  • Thumbnail: Page 
326
    326
  • Thumbnail: Page 
327
    327
  • Thumbnail: Page 
328
    328
  • Thumbnail: Page 
329
    329
  • Thumbnail: Page 
330
    330
  • Thumbnail: Page 
331
    331
  • Thumbnail: Page 
332
    332
  • Thumbnail: Page 
333
    333
  • Thumbnail: Page 
334
    334
  • Thumbnail: Page 
335
    335
  • Thumbnail: Page 
336
    336
  • Thumbnail: Page 
337
    337
  • Thumbnail: Page 
338
    338
  • Thumbnail: Page 
339
    339
  • Thumbnail: Page 
340
    340
  • Thumbnail: Page 
341
    341
  • Thumbnail: Page 
342
    342
  • Thumbnail: Page 
343
    343
  • Thumbnail: Page 
344
    344
  • Thumbnail: Page 
345
    345
  • Thumbnail: Page 
346
    346
  • Thumbnail: Page 
347
    347
  • Thumbnail: Page 
348
    348
  • Thumbnail: Page 
349
    349
  • Thumbnail: Page 
350
    350
  • Thumbnail: Page 
351
    351
  • Thumbnail: Page 
352
    352
  • Thumbnail: Page 
353
    353
  • Thumbnail: Page 
354
    354
  • Thumbnail: Page 
355
    355