Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Composition Factors of Indecomposable Modules

Maria Izabel Ramalho Martins
Transactions of the American Mathematical Society
Vol. 350, No. 5 (May, 1998), pp. 2009-2031
Stable URL: http://www.jstor.org/stable/117650
Page Count: 23
  • Read Online (Free)
  • Download ($30.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Composition Factors of Indecomposable Modules
Preview not available

Abstract

Let Λ be a connected, basic finite dimensional algebra over an algebraically closed field. Our main aim is to prove that if Λ is biserial, its ordinary quiver has no loop and every indecomposable Λ -module is uniquely determined by its composition factors, then each indecomposable Λ -module is multiplicity-free.

Page Thumbnails

  • Thumbnail: Page 
2009
    2009
  • Thumbnail: Page 
2010
    2010
  • Thumbnail: Page 
2011
    2011
  • Thumbnail: Page 
2012
    2012
  • Thumbnail: Page 
2013
    2013
  • Thumbnail: Page 
2014
    2014
  • Thumbnail: Page 
2015
    2015
  • Thumbnail: Page 
2016
    2016
  • Thumbnail: Page 
2017
    2017
  • Thumbnail: Page 
2018
    2018
  • Thumbnail: Page 
2019
    2019
  • Thumbnail: Page 
2020
    2020
  • Thumbnail: Page 
2021
    2021
  • Thumbnail: Page 
2022
    2022
  • Thumbnail: Page 
2023
    2023
  • Thumbnail: Page 
2024
    2024
  • Thumbnail: Page 
2025
    2025
  • Thumbnail: Page 
2026
    2026
  • Thumbnail: Page 
2027
    2027
  • Thumbnail: Page 
2028
    2028
  • Thumbnail: Page 
2029
    2029
  • Thumbnail: Page 
2030
    2030
  • Thumbnail: Page 
2031
    2031