Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Multivariate Analysis by Data Depth: Descriptive Statistics, Graphics and Inference

Regina Y. Liu, Jesse M. Parelius and Kesar Singh
The Annals of Statistics
Vol. 27, No. 3 (Jun., 1999), pp. 783-840
Stable URL: http://www.jstor.org/stable/120138
Page Count: 58
  • Read Online (Free)
  • Download ($19.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Multivariate Analysis by Data Depth: Descriptive Statistics, Graphics and Inference
Preview not available

Abstract

A data depth can be used to measure the "depth" or "outlyingness" of a given multivariate sample with respect to its underlying distribution. This leads to a natural center-outward ordering of the sample points. Based on this ordering, quantitative and graphical methods are introduced for analyzing multivariate distributional characteristics such as location, scale, bias, skewness and kurtosis, as well as for comparing inference methods. All graphs are one-dimensional curves in the plane and can be easily visualized and interpreted. A "sunburst plot" is presented as a bivariate generalization of the box-plot. DD-(depth versus depth) plots are proposed and examined as graphical inference tools. Some new diagnostic tools for checking multivariate normality are introduced. One of them monitors the exact rate of growth of the maximum deviation from the mean, while the others examine the ratio of the overall dispersion to the dispersion of a certain central region. The affine invariance property of a data depth also leads to appropriate invariance properties for the proposed statistics and methods.

Page Thumbnails

  • Thumbnail: Page 
783
    783
  • Thumbnail: Page 
784
    784
  • Thumbnail: Page 
785
    785
  • Thumbnail: Page 
786
    786
  • Thumbnail: Page 
787
    787
  • Thumbnail: Page 
788
    788
  • Thumbnail: Page 
789
    789
  • Thumbnail: Page 
790
    790
  • Thumbnail: Page 
791
    791
  • Thumbnail: Page 
792
    792
  • Thumbnail: Page 
793
    793
  • Thumbnail: Page 
794
    794
  • Thumbnail: Page 
795
    795
  • Thumbnail: Page 
796
    796
  • Thumbnail: Page 
797
    797
  • Thumbnail: Page 
798
    798
  • Thumbnail: Page 
799
    799
  • Thumbnail: Page 
800
    800
  • Thumbnail: Page 
801
    801
  • Thumbnail: Page 
802
    802
  • Thumbnail: Page 
803
    803
  • Thumbnail: Page 
804
    804
  • Thumbnail: Page 
805
    805
  • Thumbnail: Page 
806
    806
  • Thumbnail: Page 
807
    807
  • Thumbnail: Page 
808
    808
  • Thumbnail: Page 
809
    809
  • Thumbnail: Page 
810
    810
  • Thumbnail: Page 
811
    811
  • Thumbnail: Page 
812
    812
  • Thumbnail: Page 
813
    813
  • Thumbnail: Page 
814
    814
  • Thumbnail: Page 
815
    815
  • Thumbnail: Page 
816
    816
  • Thumbnail: Page 
817
    817
  • Thumbnail: Page 
818
    818
  • Thumbnail: Page 
819
    819
  • Thumbnail: Page 
820
    820
  • Thumbnail: Page 
821
    821
  • Thumbnail: Page 
822
    822
  • Thumbnail: Page 
823
    823
  • Thumbnail: Page 
824
    824
  • Thumbnail: Page 
825
    825
  • Thumbnail: Page 
826
    826
  • Thumbnail: Page 
827
    827
  • Thumbnail: Page 
828
    828
  • Thumbnail: Page 
829
    829
  • Thumbnail: Page 
830
    830
  • Thumbnail: Page 
831
    831
  • Thumbnail: Page 
832
    832
  • Thumbnail: Page 
833
    833
  • Thumbnail: Page 
834
    834
  • Thumbnail: Page 
835
    835
  • Thumbnail: Page 
836
    836
  • Thumbnail: Page 
837
    837
  • Thumbnail: Page 
838
    838
  • Thumbnail: Page 
839
    839
  • Thumbnail: Page 
840
    840