Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Blocking in Regular Fractional Factorials: A Projective Geometric Approach

Rahul Mukerjee and C. F. J. Wu
The Annals of Statistics
Vol. 27, No. 4 (Aug., 1999), pp. 1256-1271
Stable URL: http://www.jstor.org/stable/120163
Page Count: 16
  • Read Online (Free)
  • Download ($19.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Blocking in Regular Fractional Factorials: A Projective Geometric Approach
Preview not available

Abstract

A projective geometric characterization is given of the existence of any regular main effect sn-k design in sγ blocks. It leads to a constructive method for finding a maximal blocking scheme for any given fractional factorial design. A useful sufficient condition for admissible block designs is given in terms of the minimum aberration property of a certain unblocked design.

Page Thumbnails

  • Thumbnail: Page 
1256
    1256
  • Thumbnail: Page 
1257
    1257
  • Thumbnail: Page 
1258
    1258
  • Thumbnail: Page 
1259
    1259
  • Thumbnail: Page 
1260
    1260
  • Thumbnail: Page 
1261
    1261
  • Thumbnail: Page 
1262
    1262
  • Thumbnail: Page 
1263
    1263
  • Thumbnail: Page 
1264
    1264
  • Thumbnail: Page 
1265
    1265
  • Thumbnail: Page 
1266
    1266
  • Thumbnail: Page 
1267
    1267
  • Thumbnail: Page 
1268
    1268
  • Thumbnail: Page 
1269
    1269
  • Thumbnail: Page 
1270
    1270
  • Thumbnail: Page 
1271
    1271