Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Enzyme Plus Light Therapy to Repair DNA Damage in Ultraviolet-B-Irradiated Human Skin

Helger Stege, Len Roza, Arie A. Vink, Markus Grewe, Thomas Ruzicka, Susanne Grether-Beck and Jean Krutmann
Proceedings of the National Academy of Sciences of the United States of America
Vol. 97, No. 4 (Feb. 15, 2000), pp. 1790-1795
Stable URL: http://www.jstor.org/stable/121554
Page Count: 6
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Enzyme Plus Light Therapy to Repair DNA Damage in Ultraviolet-B-Irradiated Human Skin
Preview not available

Abstract

Ultraviolet-B (UVB) (290-320 nm) radiation-induced cyclobutane pyrimidine dimers within the DNA of epidermal cells are detrimental to human health by causing mutations and immunosuppressive effects that presumably contribute to photocarcinogenesis. Conventional photoprotection by sunscreens is exclusively prophylactic in nature and of no value once DNA damage has occurred. In this paper, we have therefore assessed whether it is possible to repair UVB radiation-induced DNA damage through topical application of the DNA-repair enzyme photolyase, derived from Anacystis nidulans, that specifically converts cyclobutane dimers into their original DNA structure after exposure to photoreactivating light. When a dose of UVB radiation sufficient to induce erythema was administered to the skin of healthy subjects, significant numbers of dimers were formed within epidermal cells. Topical application of photolyase-containing liposomes to UVB-irradiated skin and subsequent exposure to photoreactivating light decreased the number of UVB radiation-induced dimers by 40-45%. No reduction was observed if the liposomes were not filled with photolyase or if photoreactivating exposure preceded the application of filled liposomes. The UVB dose administered resulted in suppression of intercellular adhesion molecule-1 (ICAM-1), a molecule required for immunity and inflammatory events in the epidermis. In addition, in subjects hypersensitive to nickel sulfate, elicitation of the hypersensitivity reaction in irradiated skin areas was prevented. Photolyase-induced dimer repair completely prevented these UVB radiation-induced immunosuppressive effects as well as erythema and sunburn-cell formation. These studies demonstrate that topical application of photolyase is effective in dimer reversal and thereby leads to immunoprotection.

Page Thumbnails

  • Thumbnail: Page 
1790
    1790
  • Thumbnail: Page 
1791
    1791
  • Thumbnail: Page 
1792
    1792
  • Thumbnail: Page 
1793
    1793
  • Thumbnail: Page 
1794
    1794
  • Thumbnail: Page 
1795
    1795