Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Are Many Plant Species Paraphyletic?

Loren H. Rieseberg and Luc Brouillet
Taxon
Vol. 43, No. 1 (Feb., 1994), pp. 21-32
DOI: 10.2307/1223457
Stable URL: http://www.jstor.org/stable/1223457
Page Count: 12
  • Read Online (Free)
  • Download ($14.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Preview not available

Abstract

The phylogenetic status of plant species has become a critical issue in systematic and evolutionary botany, due in part to the influence of Hennigian principles on organismal classification. This paper reviews various modes of speciation and their frequency in plants, and discusses predicted phylogenetic consequences of different modes of speciation. The classic model of allopatric speciation by subdivision will typically generate monophyletic daughter species, whereas most geographically local models of speciation (e.g., the founder effect model), will produce a paraphyletic progenitor and monophyletic derivative species. Due to the theoretical difficulty of transforming widespread population systems through gene flow or selection, allopatric speciation by subdivision is likely to be less frequent than geographically local models of speciation. Low levels of gene flow will also increase the time required for the progenitor species to achieve monophyly. Thus, many plant species are likely to be paraphyletic, and predictably a species classification based on the criterion of monophyly is unlikely to be an effective tool for describing and ordering biological diversity.

Page Thumbnails

  • Thumbnail: Page 
21
    21
  • Thumbnail: Page 
22
    22
  • Thumbnail: Page 
23
    23
  • Thumbnail: Page 
24
    24
  • Thumbnail: Page 
25
    25
  • Thumbnail: Page 
26
    26
  • Thumbnail: Page 
27
    27
  • Thumbnail: Page 
28
    28
  • Thumbnail: Page 
29
    29
  • Thumbnail: Page 
30
    30
  • Thumbnail: Page 
31
    31
  • Thumbnail: Page 
32
    32