Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

"Coarse" Stability and Bifurcation Analysis Using Time-Steppers: A Reaction-Diffusion Example

Constantinos Theodoropoulos, Yue-Hong Qian and Ioannis G. Kevrekidis
Proceedings of the National Academy of Sciences of the United States of America
Vol. 97, No. 18 (Aug. 29, 2000), pp. 9840-9843
Stable URL: http://www.jstor.org/stable/123274
Page Count: 4
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
"Coarse" Stability and Bifurcation Analysis Using Time-Steppers: A Reaction-Diffusion Example
Preview not available

Abstract

Evolutionary, pattern forming partial differential equations (PDEs) are often derived as limiting descriptions of microscopic, kinetic theory-based models of molecular processes (e.g., reaction and diffusion). The PDE dynamic behavior can be probed through direct simulation (time integration) or, more systematically, through stability/bifurcation calculations; time-stepper-based approaches, like the Recursive Projection Method [Shroff, G. M. & Keller, H. B. (1993) SIAM J. Numer. Anal. 30, 1099-1120] provide an attractive framework for the latter. We demonstrate an adaptation of this approach that allows for a direct, effective ("coarse") bifurcation analysis of microscopic, kinetic-based models; this is illustrated through a comparative study of the FitzHugh-Nagumo PDE and of a corresponding Lattice-Boltzmann model.

Page Thumbnails

  • Thumbnail: Page 
9840
    9840
  • Thumbnail: Page 
9841
    9841
  • Thumbnail: Page 
9842
    9842
  • Thumbnail: Page 
9843
    9843