Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Burgess Shale-Type Preservation of Both Non-Mineralizing and 'Shelly' Cambrian Organisms from the Mackenzie Mountains, Northwestern Canada

N. J. Butterfield and C. J. Nicholas
Journal of Paleontology
Vol. 70, No. 6 (Nov., 1996), pp. 893-899
Published by: Paleontological Society
Stable URL: http://www.jstor.org/stable/1306492
Page Count: 7
  • Read Online (Free)
  • Download ($12.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Burgess Shale-Type Preservation of Both Non-Mineralizing and 'Shelly' Cambrian Organisms from the Mackenzie Mountains, Northwestern Canada
Preview not available

Abstract

Lower to Middle Cambrian shales of the Mount Cap Formation in the Mackenzie Mountains, northwestern Canada, host a variety of Burgess Shale-type macrofossils, including anomalocarid claws, several taxa of bivalved arthropod, articulated hyolithids, and articulated chancelloriids. Hydrofluoric acid processing has also yielded a broad range of organic-walled fossils, most of which are derived from forms more typically known as shelly fossils; e.g., trilobites, inarticulate brachiopods, small shelly fossils (SSF), hyolithids, and chancelloriids. Organic-walled hyolithids include conchs, opercula and helens; the proximal articulation of the helens is erosive, suggesting that they were formed "instantaneously" and periodically replaced. Organic-walled chancelloriid sclerites exhibit a polygonal surface texture and an inner "pith" of dark granular material with distally oriented conoidal divisions; such a pattern is similar to that seen in the fibers of some modern horny sponges and points to a poriferan relationship for the chancelloriids. The robust nature but minimal relief of most of these fossils suggests that primary biomineralization was minimal.

Page Thumbnails

  • Thumbnail: Page 
893
    893
  • Thumbnail: Page 
894
    894
  • Thumbnail: Page 
895
    895
  • Thumbnail: Page 
896
    896
  • Thumbnail: Page 
897
    897
  • Thumbnail: Page 
898
    898
  • Thumbnail: Page 
899
    899