Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Ontogeny and Heterochrony in the Middle Carboniferous Ammonoid Arkanites relictus (Quinn, McCaleb, and Webb) from Northern Arkansas

Daniel A. Stephen, Walter L. Manger and Cathy Baker
Journal of Paleontology
Vol. 76, No. 5 (Sep., 2002), pp. 810-821
Published by: Paleontological Society
Stable URL: http://www.jstor.org/stable/1307195
Page Count: 12
  • Read Online (Free)
  • Download ($12.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Ontogeny and Heterochrony in the Middle Carboniferous Ammonoid Arkanites relictus (Quinn, McCaleb, and Webb) from Northern Arkansas
Preview not available

Abstract

The reticuloceratid ammonoid Arkanites relictus (Quinn, McCaleb, and Webb, 1962) is represented by hundreds to thousands of individuals from horizons isolated both stratigraphically and geographically in northern Arkansas. These assemblages appear to represent mass mortality events resulting from a semelparous reproductive strategy. Arkanites relictus occurs as a dimorphic pair (depressed, widely umbilicate, cadiconic conchs and compressed, narrowly umbilicate, pachyconic conchs) thought to reflect sexual dimorphism. Late stage ontogenetic modifications, such as septal crowding and change in aperture profile, are widely cited evidence of sexual maturity in ammonoids. Septal crowding begins at a predictable ontogenetic stage in the compressed forms of A. relictus, but specimens with cadiconic conchs do not have crowded septa even at the largest diameters available. Depending on the trait examined and the proxy for age of individuals, the dimorphism in Arkanites relictus (using the depressed form as the reference morph) is the result of acceleration, neoteny, or hypermorphosis plus neoteny. If size (diameter) is considered a proxy for age, the dimorphs were the same age at death, and the septa in the compressed variants developed via acceleration relative to the depressed variants. Regarding conch shape (width vs. diameter), the compressed morphs developed via neoteny relative to the depressed morphs. If septal count is considered a proxy for age, the dimorphs were not the same age at death, and the compressed forms were produced by a combination of hypermorphosis plus neoteny, i.e., they grew longer yet slower than the depressed forms. In A. relictus, the heterochronic processes of hypermorphosis and neoteny may have been operating simultaneously, which is an interesting possibility because it is an example of a combination of both peramorphic and paedomorphic processes.

Page Thumbnails

  • Thumbnail: Page 
810
    810
  • Thumbnail: Page 
811
    811
  • Thumbnail: Page 
812
    812
  • Thumbnail: Page 
813
    813
  • Thumbnail: Page 
814
    814
  • Thumbnail: Page 
815
    815
  • Thumbnail: Page 
816
    816
  • Thumbnail: Page 
817
    817
  • Thumbnail: Page 
818
    818
  • Thumbnail: Page 
819
    819
  • Thumbnail: Page 
820
    820
  • Thumbnail: Page 
821
    821