Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

The Influence of Local and Non-Local Forcing Effects on the Subtidal Circulation of Patos Lagoon

Osmar O. Möller, Jr., Patrice Castaing, Jean-Claude Salomon and Pascal Lazure
Estuaries
Vol. 24, No. 2 (Apr., 2001), pp. 297-311
Stable URL: http://www.jstor.org/stable/1352953
Page Count: 15
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
The Influence of Local and Non-Local Forcing Effects on the Subtidal Circulation of Patos Lagoon
Preview not available

Abstract

Some basic features concerning the subtidal circulation of Patos Lagoon were studied through time series analysis of wind, freshwater discharge, and water level records, as well as by means of experiments carried out with a 3D numerical model. The results indicate that during low to moderate river discharge the wind is the main forcing mechanism in time scales associated with meteorological fronts. The two types of wind action, local and non-local effects, are distinguished and their relative importance is evaluated. Salt water enters the system due to a combination of both remote and local wind effects that favors the development of a pressure gradient towards the lagoon during southwesterly winds. This situation is reversed when northeasterly winds dominate. In the inner parts of the lagoon, local wind plays the major role by inducing set up/set down oscillations. An upwind return flow is then developed under these conditions. During high flood periods, normally observed in late winter, the circulation is driven by freshwater discharge.

Page Thumbnails

  • Thumbnail: Page 
297
    297
  • Thumbnail: Page 
298
    298
  • Thumbnail: Page 
299
    299
  • Thumbnail: Page 
300
    300
  • Thumbnail: Page 
301
    301
  • Thumbnail: Page 
302
    302
  • Thumbnail: Page 
303
    303
  • Thumbnail: Page 
304
    304
  • Thumbnail: Page 
305
    305
  • Thumbnail: Page 
306
    306
  • Thumbnail: Page 
307
    307
  • Thumbnail: Page 
308
    308
  • Thumbnail: Page 
309
    309
  • Thumbnail: Page 
310
    310
  • Thumbnail: Page 
311
    311