If you need an accessible version of this item please contact JSTOR User Support

The Prediction of Time Series with Trends and Seasonalities

Will Gersch and Genshiro Kitagawa
Journal of Business & Economic Statistics
Vol. 1, No. 3 (Jul., 1983), pp. 253-264
DOI: 10.2307/1391347
Stable URL: http://www.jstor.org/stable/1391347
Page Count: 12
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
The Prediction of Time Series with Trends and Seasonalities
Preview not available

Abstract

A maximization of the expected entropy of the predictive distribution interpretation of Akaike's minimum AIC procedure is exploited for the modeling and prediction of time series with trend and seasonal mean value functions and stationary covariances. The AIC criterion best one-step-ahead and best twelve-step-ahead prediction models can be different. The different models exhibit the relative optimality properties for which they were designed. The results are related to open questions on optimal trend estimation and optimal seasonal adjustment of time series.

Page Thumbnails

  • Thumbnail: Page 
253
    253
  • Thumbnail: Page 
254
    254
  • Thumbnail: Page 
255
    255
  • Thumbnail: Page 
256
    256
  • Thumbnail: Page 
257
    257
  • Thumbnail: Page 
258
    258
  • Thumbnail: Page 
259
    259
  • Thumbnail: Page 
260
    260
  • Thumbnail: Page 
261
    261
  • Thumbnail: Page 
262
    262
  • Thumbnail: Page 
263
    263
  • Thumbnail: Page 
264
    264