Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Calculating Interval Forecasts

Chris Chatfield
Journal of Business & Economic Statistics
Vol. 11, No. 2 (Apr., 1993), pp. 121-135
DOI: 10.2307/1391361
Stable URL: http://www.jstor.org/stable/1391361
Page Count: 15
  • Download ($14.00)
  • Cite this Item
Preview not available

Abstract

The importance of interval forecasts is reviewed. Several general approaches to calculating such forecasts are described and compared. They include the use of theoretical formulas based on a fitted probability model (with or without a correction for parameter uncertainty), various "approximate" formulas (which should be avoided), and empirically based, simulation, and resampling procedures. The latter are useful when theoretical formulas are not available or there are doubts about some model assumptions. The distinction between a forecasting method and a forecasting model is expounded. For large groups of series, a forecasting method may be chosen in a fairly ad hoc way. With appropriate checks, it may be possible to base interval forecasts on the model for which the method is optimal. It is certainly unsound to use a model for which the method is not optimal, but, strangely, this is sometimes done. Some general comments are made as to why prediction intervals tend to be too narrow in practice to encompass the required proportion of future observations. An example demonstrates the overriding importance of careful model specification. In particular, when data are "nearly nonstationary," the difference between fitting a stationary and a nonstationary model is critical.

Page Thumbnails

  • Thumbnail: Page 
121
    121
  • Thumbnail: Page 
122
    122
  • Thumbnail: Page 
123
    123
  • Thumbnail: Page 
124
    124
  • Thumbnail: Page 
125
    125
  • Thumbnail: Page 
126
    126
  • Thumbnail: Page 
127
    127
  • Thumbnail: Page 
128
    128
  • Thumbnail: Page 
129
    129
  • Thumbnail: Page 
130
    130
  • Thumbnail: Page 
131
    131
  • Thumbnail: Page 
132
    132
  • Thumbnail: Page 
133
    133
  • Thumbnail: Page 
134
    134
  • Thumbnail: Page 
135
    135