Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

A Nonstochastic Interpretation of Reported Significance Levels

David Freedman and David Lane
Journal of Business & Economic Statistics
Vol. 1, No. 4 (Oct., 1983), pp. 292-298
DOI: 10.2307/1391660
Stable URL: http://www.jstor.org/stable/1391660
Page Count: 7
  • Download ($14.00)
  • Cite this Item
A Nonstochastic Interpretation of Reported Significance Levels
Preview not available

Abstract

Tests of significance are often made in situations where the standard assumptions underlying the probability calculations do not hold. As a result, the reported significance levels become difficult to interpret. This article sketches an alternative interpretation of a reported significance level, valid in considerable generality. This level locates the given data set within the spectrum of other data sets derived from the given one by an appropriate class of transformations. If the null hypothesis being tested holds, the derived data sets should be equivalent to the original one. Thus, a small reported significance level indicates an unusual data set. This development parallels that of randomization tests, but there is a crucial technical difference: our approach involves permuting observed residuals; the classical randomization approach involves permuting unobservable, or perhaps nonexistent, stochastic disturbance terms.

Page Thumbnails

  • Thumbnail: Page 
292
    292
  • Thumbnail: Page 
293
    293
  • Thumbnail: Page 
294
    294
  • Thumbnail: Page 
295
    295
  • Thumbnail: Page 
296
    296
  • Thumbnail: Page 
297
    297
  • Thumbnail: Page 
298
    298