Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

The Proportional Hazard Model for Purchase Timing: A Comparison of Alternative Specifications

P. B. Seetharaman and Pradeep K. Chintagunta
Journal of Business & Economic Statistics
Vol. 21, No. 3 (Jul., 2003), pp. 368-382
Stable URL: http://www.jstor.org/stable/1392586
Page Count: 15
  • Download ($14.00)
  • Cite this Item
The Proportional Hazard Model for Purchase Timing: A Comparison of Alternative Specifications
Preview not available

Abstract

We use the proportional hazard model (PHM) to study purchase-timing behavior of households in two product categories: laundry detergents and paper towels. The PHM decomposes a household's instantaneous probability of buying the product at a point of time into two components: the baseline hazard that captures the household's intrinsic purchase pattern over time and the covariate function that captures the effects of marketing variables on the household's purchase timing decision. We compare the continuous-time and discrete-time PHMs, where the latter explicitly accounts for households' shopping trips that do not involve purchase of the product. We find that the discrete-time PHM empirically outperforms the continuous-time PHM in terms of explaining the observed purchase outcomes. We compare five different parametric specifications of the baseline hazard, and find that the three-parameter expo-power specification outperforms the exponential, Erlang-2, Weibull, and log-logistic specifications. We use a cause-specific, competing-risks PHM to distinguish between two types of purchase events that differ in terms of whether or not they were preceded by a shopping trip that involved purchase of the product. Such a cause-specific, competing-risks PHM is shown to outperform the traditional discrete-time PHM. We then estimate a nonparametric version of the PHM and find that it does not offer any additional insights compared to the parsimonious parametric PHM. Finally, we accommodate unobserved heterogeneity across households by allowing all of the parameters of the PHM to follow a discrete distribution across households whose locations and supports are nonparametrically estimated from the data. We find evidence for substantial unobserved heterogeneity in the data, both in the parameters of marketing variables and in the baseline hazards. This study will be a useful reference to researchers hoping to use the PHM to study event times.

Page Thumbnails

  • Thumbnail: Page 
368
    368
  • Thumbnail: Page 
369
    369
  • Thumbnail: Page 
370
    370
  • Thumbnail: Page 
371
    371
  • Thumbnail: Page 
372
    372
  • Thumbnail: Page 
373
    373
  • Thumbnail: Page 
374
    374
  • Thumbnail: Page 
375
    375
  • Thumbnail: Page 
376
    376
  • Thumbnail: Page 
377
    377
  • Thumbnail: Page 
378
    378
  • Thumbnail: Page 
379
    379
  • Thumbnail: Page 
380
    380
  • Thumbnail: Page 
381
    381
  • Thumbnail: Page 
382
    382